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Abstract

How should successive generations insure each other when the young can default on
previously promised transfers to the old? This paper studies intergenerational insurance
that maximizes the expected discounted utility of all generations subject to participation
constraints for each generation. If complete insurance is unattainable, the optimal intergen-
erational insurance is history-dependent even when the environment is stationary. The risk
from a generational shock is spread into the future, with periodic resetting. Interpreting
intergenerational insurance in terms of public debt, the fiscal reaction function is nonlinear
and the risk premium on debt is lower than the risk premium with complete insurance.

Keywords: Intergenerational insurance; limited commitment; risk sharing; stochastic
overlapping generations; sustainable debt.

JEL CODES: D64; E21; H55.

∗ Original version circulated with the title “Optimal Sustainable Intergenerational Insurance”. We thank the
editor and two anonymous referees along with Spiros Bougheas, Francesco Caselli, Gabrielle Demange, Martín
Gonzalez-Eiras, Sergey Foss, Alexander Karaivanov, Paul Klein, Dirk Krueger, Sarolta Laczó, Costas Milas, Espen
Moen, Iacopo Morchio, Nicola Pavoni, José-Víctor Ríos-Rull, Karl Schlag, Kjetil Storesletten and Aleh Tsyvinski
for helpful comments. The paper has also benefited from the comments of seminar participants at Cologne, the
London School of Economics, New York University Abu Dhabi, Oslo and Warwick in addition to presentations at
the NBER Summer Institute on Macro Public Finance, the SED Meeting in Edinburgh, the SAET Conference in Faro,
the CSEF-IGIER Symposium on Economics and Institutions at Anacapri, the CEPR European Summer Symposium
in International Macroeconomics at Tarragona, the EEA-ESEM Congress in Manchester, the Barcelona Graduate
School of Economics Summer Forum and the Vienna Macroeconomics Workshop. Sergio Cappellini provided
valuable research assistance. The first and second authors gratefully acknowledge the support of STARS@Unipd
grant 482125 and the third author gratefully acknowledges the support of the UK Economic and Social Research
Council grant ES/L009633/1.

1



INTERGENERATIONAL INSURANCE 2

Introduction

Countries face economic shocks that result in unequal exposure to risk across generations. The
Financial Crisis of 2008 and the Covid-19 pandemic are two recent and notable examples.1
Faced with such shocks, it is desirable to share risk across generations. However, full risk
sharing is not sustainable if it commits future generations to transfers they would not wish
to make once they are born. The issue of the sustainability of intergenerational insurance is
becoming increasingly relevant in many advanced economies as the relative standard of living
of the younger generation has worsened in recent decades.2 If this generational shift persists,
future generations may be less willing to contribute to insurance arrangements than in the past.
Therefore, a natural question to ask is how an optimal intergenerational insurance arrangement
should be structured when there is limited enforcement of risk-sharing transfers.

Despite its policy relevance, the literature on intergenerational insurance does not fully
address this question. The normative approach in the literature investigates the optimal design
of intergenerational insurance but assumes that transfers are mandatory, ignoring the issue
of limited enforcement. Meanwhile, the positive approach highlights the political limits to
intergenerational insurance while considering equilibrium allocations supported by a particular
voting mechanism, which are not necessarily Pareto optimal.

In this paper, we examine optimal intergenerational insurance when subsequent generations
can default on risk-sharing transfers promised to previous generations. We model the limited
enforcement of transfers by assuming that transfers satisfy a participation constraint for each
generation. This can be interpreted as requiring that the insurance arrangement be supported
by each generation if put to a vote. An arrangement of risk-sharing transfers is sustainable if it
satisfies the participation constraint of every generation. Optimal sustainable intergenerational
insurance is determined by a benevolent social planner who chooses transfers to maximize the
expected discounted utility of all generations subject to the participation constraints.

The model is simple. At each date, a new generation is born and lives for two periods. Each
generation comprises a constant population of homogeneous agents with the population size
normalized to one. Each agent receives an endowment of a single, nonstorable consumption
good, both when young and old. Endowments are stochastic. Each generation is affected by an
idiosyncratic shock (common to all agents within a generation) and an aggregate growth shock.

1 Glover et al. (2020) find that the Financial Crisis of 2008 had a negative impact on the older generation, while
the young benefited from the fall in asset prices. Glover et al. (2023) find that younger workers have been impacted
to a greater extent by the response to the Covid-19 pandemic because they disproportionately work in sectors that
have been particularly adversely affected, such as retail and hospitality.

2 Part A of the Supplementary Appendix reports changes in the relative standard of living of the young and the
old for six OECD countries using data from the Luxembourg Income Study Database.
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We adopt the approach of Alvarez and Jermann (2001) and Krueger and Lustig (2010) and
assume that preferences exhibit a constant coefficient of relative risk aversion (for simplicity,
we concentrate on the case of logarithmic preferences) and that the idiosyncratic and growth
shocks are independent and identically distributed. In this setting, the underlying economy is
stationary. There are only two frictions. First, risk may not be allocated efficiently, even if the
economy is dynamically efficient, because there is no market in which the young can share risk
with previous generations (see, for example, Diamond, 1977). Second, the amount of risk that
can be shared is limited because transfers between generations cannot be enforced. In particular,
the old will not make a transfer to the young (since the old have no future). Conversely, the
young may make a transfer to the old. However, the young will only do so if they receive
promises for their old age that at least match their expected lifetime utility from autarky, and
they anticipate that these promises will be honored by the next generation.

It is well known (see, for example, Aiyagari and Peled, 1991) that if endowments are such
that the young wish to defer consumption to old age at a zero net interest rate, then there
are stationary transfers that improve upon autarky (Proposition 2). Under this condition, and
assuming that the first-best transfers cannot be sustained, there is a trade-off between efficiency
and providing incentives for the young to make transfers to the old. This trade-off is resolved
by linking the utility the young are promised for their old age to the promise made to the
young of the previous generation. The resulting optimal sustainable intergenerational insurance
arrangement is history dependent, even though the economic environment is stationary.

To understand why there is history dependence, suppose that the first-best transfers would
violate the participation constraint of the young in some endowment state. To ensure that the
current transfer made by the young is voluntary, either the current transfer is reduced below the
first-best level, or the promised transfers for their old age are increased. Both changes are costly
since a lower current transfer reduces the amount of risk shared today while increasing the
transfers promised to the current young for their old age tightens the participation constraints
of the next generation and reduces the risk that can be shared tomorrow. Therefore, an optimal
trade-off exists between reducing the current transfer and increasing the future promise. This
trade-off depends both on the current endowment and the current promise. For example,
consider some current endowment and a current promise such that the future promise for the
same endowment state is higher than the current promise. If the same endowment state is
repeated in the subsequent period, then the young in that period are called upon to make a larger
transfer, which in turn requires a higher promise of future utility to them as well. Thus, the
transfer depends not only on the current endowment but also on the past promise, and hence,
the history of endowment shocks.
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The optimal sustainable intergenerational insurance is found by solving a functional equation
derived from the planner’s maximization problem. The solution is characterized by policy
functions for the consumption of the young (or equivalently, the transfer made to the old) and
the future promised utility for their old age in each endowment state. Both policy functions
depend on the current endowment and the current promise. For a given endowment, the
consumption of the young is weakly decreasing in the current promise, while the future promise
is weakly increasing in the current promise (Lemmas 2 and 3). When the current endowment
state is repeated, the policy function for the future promise has a unique fixed point, which
(ignoring a boundary condition) equals the utility at the first-best outcome. Therefore, the
future promise is higher than the current promise when it is less than the corresponding fixed
point and lower than the current promise when the current promise is greater than the fixed
point. When the promised utility is sufficiently low, there is some endowment state in which
the participation constraint of the young does not bind. In that case, the future promise is reset
to the largest value that maximizes the planner’s payoff.

When a participation constraint binds, the risk affecting one generation is spread to future
generations. The resetting property shows, however, that the effect of a shock does not last for-
ever. Moreover, it implies strong convergence to a unique invariant distribution (Proposition 5).
The invariant distribution exhibits history dependence, and consumption fluctuates across states
and over time, even in the long run. This starkly contrasts to the situation under either full
enforcement of transfers or no risk. In the former case, the promised utility is constant over
time, except possibly in the initial period (Proposition 3). In the latter case, the promised utility
is constant in the long run, although there may be an initial phase during which the promised
utility falls (Proposition 4). In both cases, the allocation is efficient in the long run. Thus, both
risk and limited enforcement are necessary for history dependence and inefficiency in the long
run.

Transfers to the old can be interpreted in terms of debt. This interpretation allows us to address
the dynamics of debt together with the issue of debt valuation and sustainability following the
model-based approach introduced by Bohn (1995, 1998). With this interpretation, the planner
issues one-period state-contingent bonds at the state price determined by the corresponding
intertemporal marginal rate of substitution and balances the budget by taxing or subsidizing the
young. Given the bond prices and taxes, the young buy the correct quantity of state-contingent
bonds to finance their optimal old-age consumption. It is natural to measure debt relative to
the endowment of the young when preferences are logarithmic. With debt measured in this
way, there is a maximal debt limit and a debt policy function that determines the next-period
debt as a function of the current debt and the next-period endowment share. This function is
constant when debt is low but is nonlinear and strictly increasing when debt is above a critical
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threshold (Corollary 1). The debt policy function and the history of endowments determine the
dynamics of debt. Debt rises or falls depending on the evolution of endowments, but eventually,
resets to a minimum level, creating cycles of debt. The difference between debt and the revenue
generated from issuing state-contingent bonds defines the fiscal reaction function that measures
how the tax rate depends on debt. Absent enforcement frictions, the fiscal reaction function is
linearly increasing in debt. However, with enforcement frictions, the fiscal reaction function is
linear when debt is low but nonlinear when it is high. In particular, when debt is below the
threshold, the amount of debt issued is independent of the current debt, while the price of the
state-contingent bonds is linearly decreasing in debt. Thus, bond revenue falls with debt, and
the tax rate rises linearly. Above the threshold, two factors affect the fiscal reaction function.
The price of state-contingent bonds decreases with debt, while bond issuance increases with
debt according to the nonlinear debt policy function. The combined effect of these two factors
results in a nonlinear fiscal reaction function.

The model also provides implications for asset pricing and the dependence of asset prices on
debt (Proposition 6). Since the idiosyncratic and growth shocks are independent and identically
distributed, the implied conditional yields are the sum of a risk-adjusted component and a
constant given by the log of the average growth rate. The price of state-contingent bonds
decreases with debt, which implies that the conditional yields, including the risk-free rate,
increase with debt. The discount factor of the planner and the average growth rate determine
the yield on the long bond. However, the long-short spread may be positive or negative. The
dynamics of debt imply that the long-short spread is positive when debt is low, and the young
are poor because, in this case, debt will rise, leading to higher expected future yields. Likewise,
the long-short spread is negative when debt is high, and the young are rich because debt will
fall, leading to lower expected future yields.

The variability of yields and their decomposition into growth-adjusted and growth-dependent
components is also significant for debt valuation. There is a linear decomposition of the
risk premium on debt into a risk-adjusted component and a risk premium on aggregate risk
(Proposition 7). The return on bonds increases with the endowment of the young next period,
as does the marginal utility of consumption of the old next period. Thus, the return on bonds
is positively correlated with the stochastic discount factor for a given debt, resulting in a risk
premium on debt lower than the risk premium on aggregate risk. In the absence of enforcement
frictions, this gap is zero. When there are enforcement frictions, debt is a hedge for the
endowment risk, and this reduces the risk premium on debt. Consequently, for a fixed plan
of future primary surpluses, higher debt can be sustained compared to a case where the future
surpluses are discounted using the risk premium on aggregate risk. This gap between the risk
premiums on aggregate risk and debt offers a potential resolution to the debt valuation puzzle
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posed by Jiang et al. (2021), who find that the value of U.S. debt exceeds the present value of
future primary surpluses when discounted by the risk premium on aggregate risk.3 Moreover,
the risk premium on debt varies with debt. In particular, it rises or falls depending on whether
the expected return on debt increases with debt at a faster or slower rate than the risk-free interest
rate.

In an example with two endowment states, we provide a closed-form solution for the bound
on the variability of the implied yields and show that the invariant distribution of debt is a
transformation of a geometric distribution (Proposition 8). Numerically, the solution can be
found using a shooting algorithm without the need to solve a functional equation. In this
example, the risk premium increases with debt, leading to a reduction in the gap between the
risk premium on aggregate risk and the risk premium on debt.

Literature. The paper builds on the literature on risk sharing in models with overlapping
generations. In most of this literature, transfers are mandatory, and consideration is restricted to
stationary transfers (see, for example, Shiller, 1999, Rangel and Zeckhauser, 2001), in contrast to
the voluntary and history-dependent transfers considered here. Our result on history dependence
is foreshadowed in a mean-variance setting by Gordon and Varian (1988), who establish that
any time-consistent optimal intergenerational risk-sharing agreement is nonstationary. Ball
and Mankiw (2007) analyze risk sharing when generations can trade contingent claims before
they are born. They find that idiosyncratic shocks are spread equally across generations, and
consumption follows a random walk, as in Hall (1978). Such an allocation is not sustainable
since it violates the participation constraint of some future generation almost surely. In contrast,
we show that although the effects of a shock can be persistent, they are unevenly spread across
future generations, and resetting ensures that they cannot last forever.

By interpreting the transfer to the old as public debt, we complement the extensive literature
on debt sustainability and the fiscal reaction function that began with Bohn (1995, 1998). Our
result on the nonlinearity of the fiscal reaction function echoes the discussion of fiscal fatigue,
which argues that the primary fiscal balance responds sluggishly to rising debt when debt is
high because of the adverse implications of debt, such as the risk of default (see, for example,
Mendoza and Ostry, 2008, Ghosh et al., 2013). Despite the absence of default in our model,
enforcement constraints generate nonlinearity in the fiscal reaction function. Bhandari et al.
(2017) also study optimal fiscal policy and debt dynamics but in a model with infinitely-lived
and heterogeneous agents where markets are incomplete because of constraints on tax policy.
Brunnermeier et al. (2023) provide a result similar to ours that the risk premium on debt is
lower than the risk premium on aggregate risk. In their model, infinitely-lived agents must

3 For an overview of the debt valuation and sustainability, see, for example, Reis (2022), Willems and
Zettelmeyer (2022) and Jiang et al. (2023).
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retain a fixed proportion of their idiosyncratic risk. Government debt serves as a hedge against
idiosyncratic risk, and consequently, debt becomes a negative beta asset. The authors emphasize
that debt can command a bubble premium, which may add to the safety of government debt. In
contrast to Brunnermeier et al. (2023), our model has no bubble component, and the extent of
risk sharing is determined endogenously, depending on the history of endowment shocks.

Methodologically, the paper relates to the literature on risk sharing and limited enforcement
frictions with infinitely-lived agents. Two polar cases have been examined: one with two
infinitely-lived agents (see, for example, Thomas and Worrall, 1988, Chari and Kehoe, 1990,
Kocherlakota, 1996) and the other with a continuum of infinitely-lived agents (see, for example,
Thomas and Worrall, 2007, Krueger and Perri, 2011, Broer, 2013). The overlapping generations
model considered here has a continuum of agents, but only two agents are alive at any point
in time. The model is not nested in either of the two infinitely-lived agent models but fills
an essential gap in the literature by analyzing optimal intergenerational insurance with limited
enforcement frictions. Here, we establish strong convergence to the invariant distribution,
whereas Krueger and Perri (2011) and Broer (2013) consider the solution only at an invariant
distribution and Thomas and Worrall (2007) discuss convergence only in a particular case.

Plan of paper. Section 1 sets out the model. Section 2 considers two benchmarks: one with
full enforcement of transfers from the young to the old and the other without risk. Section 3
characterizes optimal sustainable intergenerational insurance and Section 4 establishes conver-
gence to an invariant distribution on a countable ergodic set. Section 5 provides an interpretation
of the optimum in terms of debt and derives the fiscal reaction function. Section 6 discusses
the implications for asset pricing and Section 7 considers the valuation of debt. Section 8
presents an example with two endowment states. Section 9 concludes. The Online Appendix
contains the proofs of the main results. Additional proofs and further details can be found in
the Supplementary Appendix.

1 The Model

Time is discrete and indexed by 𝑡 = 0, 1, 2, . . . ,∞. The model consists of a pure exchange
economy with an overlapping generations demographic structure. At each time 𝑡, a new
generation is born and lives for two periods. The generation born at date 𝑡 has a population of
𝑁𝑡 homogeneous agents. We assume that there is no population growth and normalize 𝑁𝑡 = 1,
so it is as if each generation has a single agent.4 Each agent is young in the first period of life

4 The assumption that agents of the same generation are homogeneous makes it possible to focus on intergen-
erational risk sharing. However, it does mean that we ignore questions about inequality within generations and its
evolution over time. Although we maintain the assumption of a constant population, the qualitative properties of
the model are unchanged if there is a constant rate of population growth. Additionally, Part D of the Supplementary
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and old in the second. The economy starts at 𝑡 = 0 with an initial old agent and an initial young
agent. Since time is infinite, the initial old agent is the only agent that lives for just one period.

At each time 𝑡, agents receive an endowment of a perishable consumption good. Endowments
are finite and strictly positive. The young and the old endowments at time 𝑡 are 𝑒

𝑦
𝑡 and 𝑒𝑜𝑡 with

an aggregate endowment of 𝑒𝑡 = 𝑒
𝑦
𝑡 + 𝑒𝑜𝑡 . The endowment share of the young is 𝑠𝑡 ≔ 𝑒

𝑦
𝑡 /𝑒𝑡 (the

endowment share of the old is 1 − 𝑠𝑡), and the gross growth rate of the aggregate endowment
is 𝛾𝑡 ≔ 𝑒𝑡/𝑒𝑡−1. There is both idiosyncratic (share of the generation’s endowment) risk and
aggregate (growth) risk. The sequences of random variables (𝑠𝑡 : 𝑡 ≥ 0) and (𝛾𝑡 : 𝑡 ≥ 0) take
values in finite sets I and J , respectively, where |I | = 𝐼 ≥ 2 and |J | = 𝐽 ≥ 1. The pair
𝜌𝑡 ≔ (𝑠𝑡 , 𝛾𝑡) taking values in P ⊆ I × J follows a finite-state, aperiodic, time-homogeneous
Markov process with the probability of transiting from 𝜌𝑡 to state 𝜌𝑡+1 next period given by
𝜛(𝜌𝑡 , 𝜌𝑡+1).

Denote the history of endowment shares and growth rates up to and including time 𝑡 by
𝑠𝑡 := (𝑠0, 𝑠1, ..., 𝑠𝑡) ∈ I𝑡 and 𝛾𝑡 := (𝛾0, 𝛾1, ..., 𝛾𝑡) ∈ J 𝑡 and let 𝜌𝑡 := (𝜌0, 𝜌1, ..., 𝜌𝑡) ∈ P𝑡 . The
distribution of 𝜌0 is given by the function 𝜛(𝜌0) and the probability of reaching the history
𝜌𝑡 is 𝜛(𝜌𝑡) = 𝜛(𝜌𝑡−1)𝜛(𝜌𝑡−1, 𝜌𝑡). Hence, the aggregate endowment at time 𝑡 is the random
variable 𝑒𝑡 =

∏𝑡
𝑘=0 𝛾𝑘 with 𝛾0 = 𝑒0.

There is complete information. Endowments depend only on the current state, whereas con-
sumption can, in principle, depend on the history of states. Denote the per-period consumption
of the young by 𝐶 (𝜌𝑡) and the corresponding consumption share by 𝑐(𝜌𝑡) = 𝐶 (𝜌𝑡)/𝑒𝑡 . There
is no technology to store the endowment from one period to the next, and hence, the aggre-
gate endowment is consumed each period. Consequently, the per-period consumption of the
old is 𝑒𝑡 − 𝐶 (𝜌𝑡) and the corresponding consumption share is 1 − 𝑐(𝜌𝑡). In autarky, agents
consume only their own endowments, that is, the consumption share of the young is 𝑠𝑡 , and the
consumption share of the old is 1 − 𝑠𝑡 for all 𝑡 and (𝜌𝑡−1, 𝜌𝑡).

Each generation is born after that period’s uncertainty is resolved when the growth rate of
the economy and the endowment shares of the young and the old are known. Therefore, after
birth, a generation only faces uncertainty in old age, and there is no insurance market in which
the young can insure against their endowment risk. Let {𝐶} = {𝐶 (𝜌𝑡): 𝑡 ≥ 0, 𝜌𝑡 ∈ P𝑡} denote a
history-contingent consumption stream of the young. Then, the lifetime utility gain over autarky
for a generation born after the history 𝜌𝑡 is:

𝑈
(
{𝐶}; 𝜌𝑡

)
≔ 𝑢(𝐶 (𝜌𝑡)) − 𝑢(𝑒𝑦𝑡 ) + 𝛽

∑︁
𝜌𝑡+1
𝜛(𝜌𝑡 , 𝜌𝑡+1)

(
𝑢(𝑒𝑡+1 − 𝐶 (𝜌𝑡 , 𝜌𝑡+1)) − 𝑢(𝑒𝑜𝑡+1)

)
,

Appendix examines the impact of a demographic cohort shock and shows how the effect of a shock can be amplified
and persistent.
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where 𝑢(·) is the per-period utility function, common to both the young and the old, and
𝛽 ∈ (0, 1] is the generational discount factor. We assume the per-period utility function is
logarithmic, 𝑢(·) = log(·). Hence, the preferences of an agent can be expressed in terms of
consumption and endowment shares. In particular, since 𝑒

𝑦
𝑡 = 𝑠𝑡𝑒𝑡 and 𝐶 (𝜌𝑡) = 𝑐(𝜌𝑡)𝑒𝑡 , it

follows that 𝑢(𝐶 (𝜌𝑡)) − 𝑢(𝑒𝑦𝑡 ) = log(𝑐(𝜌𝑡)) − log(𝑠𝑡) and 𝑈 ({𝐶}; 𝜌𝑡) = 𝑈 ({𝑐}; 𝜌𝑡) where

𝑈
(
{𝑐}; 𝜌𝑡

)
≔ log(𝑐(𝜌𝑡)) − log(𝑠𝑡) + 𝛽

∑︁
𝜌𝑡+1
𝜛(𝜌𝑡 , 𝜌𝑡+1)

(
log(1−𝑐(𝜌𝑡 , 𝜌𝑡+1)) − log(1 − 𝑠𝑡+1)

)
.

We call the history-contingent stream of consumption shares {𝑐} = {𝑐(𝜌𝑡): 𝑡 ≥ 0, 𝜌𝑡 ∈ P𝑡}
an intergenerational insurance rule since it determines how consumption is allocated between
the young and the old for any history 𝜌𝑡 . Since storage is not possible and because the young
are born after uncertainty is resolved, the only means of achieving intergenerational insurance
is through transfers between the young and the old. We assume that there is a benevolent
social planner who chooses an intergenerational insurance rule of history-contingent transfers
to maximize a discounted sum of the expected utilities of all generations. Let the planner’s
expected discounted utility gain over autarky, conditional on the history 𝜌𝑡 , be

𝑉
(
{𝑐}; 𝜌𝑡

)
≔

𝛽

𝛿

(
log(1 − 𝑐(𝜌𝑡)) − log(1 − 𝑠𝑡)

)
+E𝑡

[∑︁∞
𝑗=𝑡

𝛿𝑡− 𝑗𝑈
(
{𝑐}; 𝜌 𝑗

) ]
where E𝑡 is the expectation over future histories at time 𝑡. The planner’s discount factor is
𝛿 ∈ (0, 1), and the weight on the utility of the initial old is 𝛽/𝛿.5 To maximize the discounted
sum of expected lifetime utilities, the planner must respect the constraint that transfers are
voluntary.6 That is, the planner must respect the constraint that neither the old nor the young
would be better off in autarky than adhering to the specified transfers for any history of shocks.
For the old, this means they will not make a positive transfer to the young because there is no
future benefit to offset such a transfer. Hence, the consumption of the young cannot exceed their
endowment, or equivalently,

𝑐(𝜌𝑡) ≤ 𝑠𝑡 for all 𝑡 ≥ 0 and 𝜌𝑡 ∈ P𝑡 . (1)

The analogous participation constraint for the young requires that the conditional transfers
promised for their old age sufficiently compensate for the transfer made when young so that they
are no worse off than reneging on the transfer today and receiving the corresponding autarkic

5 The assumption of geometric discounting for the planner is common (see, for example, Farhi and Werning,
2007). Using a weight of 𝛽/𝛿 for the initial old preserves the same relative weights on the young and the old,
including the initial old, in every period.

6 The assumption that the transfer is voluntary can be interpreted as requiring that the intergenerational insurance
rule is supported by each generation if put to a vote.
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lifetime utility. That is,

𝑈
(
{𝑐}; 𝜌𝑡

)
≥ 0 for all 𝑡 ≥ 0 and 𝜌𝑡 ∈ P𝑡 . (2)

For expositional simplicity, let the initial state 𝜌0 be given.7 Hence, at 𝑡 = 0, the planner chooses
{𝑐} to maximize:

𝑉 ({𝑐}; 𝜌0) , (3)

subject to the constraint set Λ ≔ {{𝑐} | (1) and (2)}. Since utility is strictly concave, and the
constraints in (2) are linear in utility, the planner’s objective in equation (3) is concave and the
constraint set Λ is convex and compact.

Definition 1. An Intergenerational Insurance rule is sustainable if the history-dependent se-
quence {𝑐} ∈ Λ.

Definition 2. A Sustainable Intergenerational Insurance rule is optimal if it maximizes the
objective in equation (3) subject to the constraint that the initial old receive a utility from their
consumption share of at least �̄�0:

log(1 − 𝑐(𝜌0)) ≥ �̄�0. (4)

We introduce constraint (4) with an exogenous initial target utility of �̄�0 because it is useful
when considering the evolution of the optimal sustainable intergenerational insurance rule in
Section 3.8 However, we will return to the case where the planner chooses the initial �̄�0.

Since 𝑈 ({𝐶}; 𝜌𝑡) = 𝑈 ({𝑐}; 𝜌𝑡) and utility is logarithmic, the objectives and constraints are
equivalent whether consumption is expressed in levels or shares. That is, the economy with
stochastic growth is equivalent to an economy with a constant endowment and consumption
expressed as shares of the aggregate endowment. The growth rate of the consumption levels is
simply the growth rate of the consumption shares multiplied by the growth rate of the aggregate
endowment.

Remark 1. For preferences that exhibit constant absolute risk aversion, this equivalence prop-
erty is well-known to hold in models of idiosyncratic and aggregate risk with infinitely-lived
agents (see, for example, Alvarez and Jermann, 2001, Krueger and Lustig, 2010). An analogous
extension can be shown to hold here by defining growth-adjusted transition probabilities and

7 The analysis is easily generalized to any given initial distribution 𝜛(𝜌0).
8 The initial target utility may also depend on the initial state. Varying �̄�0 traces out the Pareto frontiers

that trade-off the utility of the old against the planner’s valuation of the expected discounted utility of all future
generations.
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discount factors to satisfy the following:

�̂�(𝜌𝑡 , 𝜌𝑡+1) ≔
𝜛(𝜌𝑡 , 𝜌𝑡+1) (𝛾𝑡+1)1−𝛼∑
𝜌𝑡+1 𝜛(𝜌𝑡 , 𝜌𝑡+1) (𝛾𝑡+1)1−𝛼

and
𝛽(𝜌𝑡)
𝛽

=
𝛿(𝜌𝑡)
𝛿

≔
∑︁
𝜌𝑡+1

𝜛(𝜌𝑡 , 𝜌𝑡+1) (𝛾𝑡+1)1−𝛼,

where 𝛼 is the coefficient of relative risk aversion.

In what follows, we make the simplifying assumption that the shocks to endowment shares
and growth rates are independent and are identically and independently distributed (hereafter,
i.i.d.).

Assumption 1. (i) The state 𝜌 is i.i.d. with the probability given by 𝜛(𝜌). (ii) The endowment
share and the growth rate are independently distributed, that is, 𝜛(𝜌) = 𝜋(𝑠)𝜍 (𝛾) where
𝜋(𝑠) and 𝜍 (𝛾) are the marginal distributions for the endowment shares and the growth rates
respectively.

By Part (i) of Assumption 1, the economy is stationary. We make this assumption to emphasize
that the history dependence we derive below follows from the participation constraints rather
than from any feature of the economic environment itself.9 Since the terms 𝑈 ({𝑐}; 𝜌𝑡) and
𝑉 ({𝑐}; 𝜌𝑡) depend on the growth rates 𝛾𝑡 and 𝛾𝑡+1 only via the transition function 𝜛(𝜌𝑡 , 𝜌𝑡+1), it
follows that the consumption shares in any optimal sustainable intergenerational insurance rule
depend only on the history of endowment shares 𝑠𝑡 .

Proposition 1. Under Assumption 1, the consumption shares in any optimal sustainable inter-
generational insurance rule depend only on the history 𝑠𝑡 and are independent of the history of
growth shocks 𝛾𝑡 .

A similar result is well known from models with infinitely-lived agents (see, again, Alvarez
and Jermann, 2001, Krueger and Lustig, 2010).10 We will consider the asset pricing implications
and contrast them to those from infinitely-lived models in Section 6.

Preliminaries. Since there are 𝐼 ≥ 2 states for the endowment share, order states such that
𝑠(𝑖) < 𝑠(𝑖+1) for 𝑖 = 1, . . . , 𝐼−1, so that, a higher state corresponds to a larger endowment share
for the young. For convenience, we will refer to states 1, 2, . . . , 𝐼 corresponding to the shares
𝑠(1), 𝑠(2), . . . , 𝑠(𝐼) and to simplify notation will sometimes express variables as a function of 𝑖
rather than 𝑠.

9 The assumption of i.i.d. shocks is standard in OLG models where a generation may cover 20-30 years.
10 Under Assumption 1 and preferences exhibiting constant relative risk aversion, the discount factors defined

in Remark 1 satisfy 𝛽/𝛽 = 𝛿/𝛿 =
∑

𝛾 𝜍 (𝛾)𝛾1−𝛼. If 𝛼 ≠ 1, then the planner’s objective is finite provided
𝛿
∑

𝛾 𝜍 (𝛾)𝛾1−𝛼 < 1.
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Under Assumption 1, the existence of a non-autarkic sustainable allocation can be addressed
by considering small stationary transfers that depend only on the current endowment state.
Denote the intertemporal marginal rate of substitution between the consumption share when
young in state 𝑠 and the consumption share when old in state 𝑟 next period, evaluated at
autarky, by �̂�(𝑠, 𝑟) ≔ 𝛽𝑠/(1 − 𝑟) and let 𝑞(𝑠, 𝑟) ≔ 𝜋(𝑟)�̂�(𝑠, 𝑟). The terms �̂�(𝑠, 𝑟) and
𝑞(𝑠, 𝑟) correspond to the stochastic discount factor and the state prices in an equilibrium
model. Denote the 𝐼 × 𝐼 matrix of terms 𝑞(𝑠, 𝑟) by �̂�. A non-autarkic sustainable allocation
exhausting the aggregate endowment and satisfying the participation constraints in (1) and (2)
exists whenever the Perron root of �̂� is greater than one (see, for example, Aiyagari and
Peled, 1991, Chattopadhyay and Gottardi, 1999). In this case, there exists a vector of strictly
positive stationary transfers that improves the lifetime utility of the young in each state. Since
the endowment states are independent, the matrix �̂� has rank one, and the Perron root is its
trace. We assume that the trace of �̂� is larger than the harmonic mean of the growth factors,
�̄� ≔ (∑𝛾 𝜍 (𝛾)𝛾−1)−1.

Assumption 2.
∑

𝑠∈I 𝑞(𝑠, 𝑠) > �̄�.

If there is just one state with the young receiving a share 𝑠 of the aggregate endowment and
no growth, then Assumption 2 reduces to the standard Samuelson condition: 𝑠 > 1/(1 + 𝛽). In
this case, it is well known that there are Pareto-improving transfers from the young to the old.
Assumption 2 is the generalization to the stochastic case and a natural assumption given that
our focus is on transfers to the old.11 Given Assumption 2, it follows that the constraint set Λ is
nonempty.

Proposition 2. Under Assumption 2, there exists a non-autarkic and stationary Sustainable
Intergenerational Insurance rule.

Furthermore, we assume:

Assumption 3. 𝑠(1) ≤ 𝛿/(𝛽 + 𝛿).

Assumption 3 provides a simple sufficient condition for the strong convergence result of
Section 4. Since 𝛿 < 1, Assumption 3 implies that 𝑠(1) < 1/(1 + 𝛽). That is, in the absence
of growth, the state-wise Samuelson condition does not hold in every state, showing that our
results do not depend on this property. In the terminology of Gale (1973), the economy can be
viewed as a mix of Samuelson and classic cases.

11 A simple sufficient condition for Assumption 2 to be satisfied is that the Frobenius lower bound, given by the
minimum row sum of �̂�, is greater than �̄�. A row sum greater than �̄� implies that in autarky, the young would wish
to save for their old age in each endowment state even if the net interest rate were zero.
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2 Two Benchmarks

Before turning to the characterization of the optimal sustainable intergenerational insurance,
it is helpful to consider two benchmark cases that illustrate the inefficiencies generated by the
presence of limited enforcement and uncertainty. The first benchmark ignores the participation
constraints of the young but not the participation constraints of the old. The second benchmark
considers an economy without risk but requires that the planner respects the participation
constraints of both the young and the old.

First Best. Suppose the planner ignores the participation constraints of the young and let
Λ∗ ≔ {{𝑐} | (1)} denote the set of transfers without the constraints in (2).12

Definition 3. An Intergenerational Insurance {𝑐} ∈ Λ∗ is first best if it maximizes the objective
function (3) subject to constraint (4).

It is easy to verify that at the first-best optimum:

𝑐∗(𝑠𝑡) = min
{

𝛿

𝛽 + 𝛿 , 𝑠𝑡
}

for all 𝑡 > 0 and 𝑠𝑡 ∈ S𝑡 . (5)

Condition (5) shows that the consumption shares of the young are kept constant unless doing so
would involve a transfer from the old to the young, in which case the consumption share is the
autarky value.13 That is, at the first best, the consumption share is independent of the history
𝑠𝑡−1 and depends only on the current endowment share 𝑠𝑡 when the nonnegativity constraint on
the transfer binds. Under Assumption 3, there is always one state in which the participation
constraint of the old holds with equality.

It can be seen from condition (5) that for states in which transfers are positive, the first-best
consumption share of the young is independent of 𝑠. It is decreasing in 𝛽 since a higher 𝛽 puts
more weight on the utility of the old who receive the transfer, and it is increasing in 𝛿 since a
higher 𝛿 puts more weight on the utility of the young who make the transfer.

Let 𝜔min(𝑠) ≔ log(1 − 𝑠) be the utility of the old at autarky and 𝜔∗ ≔ log(𝛽/(𝛽 + 𝛿)) be
the utility of the old when the consumption share of the young is 𝛿/(𝛽 + 𝛿). Then, 𝜔∗(𝑠) ≔
max{𝜔min(𝑠), 𝜔∗} is the utility of the old at the first-best solution when the endowment share
of the young is 𝑠. Since 𝑠0 is the endowment share of the young at the initial date, it follows

12 Hereafter, the asterisk designates the first-best outcome. Note that the first best could be defined by assuming
that the planner ignores the participation constraints of both the young and the old. The reason for presenting
the first best as we do is to show that this allocation is stationary. Hence, any history dependence of the optimal
sustainable intergenerational insurance rule derives from the imposition of the participation constraints of the
young.

13 Condition (5) is a special case of the familiar Arrow-Borch condition for optimal risk sharing modified to
account for the constraint that transfers are only from the young to the old.
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from Definition 2 that constraint (4) does not bind when �̄�0 ≤ 𝜔∗(𝑠0). In this case, the first-best
consumption at 𝑡 = 0 is 𝑐∗(𝑠0), determined by condition (5) as in every other time 𝑡 > 0. On
the other hand, for �̄�0 > 𝜔∗(𝑠0), constraint (4) binds and 𝑐∗(𝑠0) = 1 − exp(�̄�0). In this case,
the initial transfer to the old is correspondingly higher than implied by condition (5).

Denote the planner’s per-period payoff at the first-best allocation by 𝑣∗(𝑠) = log(𝑐∗(𝑠)) +
(𝛽/𝛿) log(1 − 𝑐∗(𝑠)) and the expected discounted payoff to the planner by 𝑉∗(𝑠0, 𝜔) when the
initial endowment share is 𝑠0 and the initial utility of the old is 𝜔. The maximum utility the old
can get occurs if they consume all of the endowment, so that 𝜔max = log(1) = 0. Let Ω(𝑠0) =
[𝜔min(𝑠0), 0] be the set of possible utilities for the old at the initial state, �̄�∗ ≔

∑
𝑠 𝜋(𝑠)𝑣∗(𝑠)

be the planner’s expected per-period payoff at the first-best solution and �̄�∗ ≔ �̄�∗/(1 − 𝛿) be
the corresponding continuation payoff. The first-best outcome is summarized in the following
proposition.14

Proposition 3. (i) The consumption share 𝑐∗(𝑠𝑡) is stationary and satisfies condition (5) for
𝑡 > 0. For 𝑡 = 0, 𝑐∗(𝑠0) satisfies condition (5) for 𝜔 ≤ 𝜔∗(𝑠0) and 𝑐∗(𝑠0) = 1 − exp(𝜔) for
𝜔 > 𝜔∗(𝑠0). (ii) The value function 𝑉∗(𝑠0, ·):Ω(𝑠0) → R has 𝑉∗(𝑠0, 𝜔) = 𝑣∗(𝑠0) + 𝛿�̄�∗ for
𝜔 ≤ 𝜔∗(𝑠0) and 𝑉∗(𝑠0, 𝜔) = (𝛽/𝛿)𝜔 + log(1 − exp(𝜔)) + 𝛿�̄�∗ for 𝜔 > 𝜔∗(𝑠0), where the
derivative 𝑉∗𝜔 (𝑠0, 𝜔

∗(𝑠0)) = min{0, (𝛽/𝛿) − ((1 − 𝑠0)/𝑠0)} with lim𝜔→0𝑉
∗
𝜔 (𝑠0, 𝜔) = −∞.

The value function 𝑉∗(𝑠0, 𝜔) is decreasing and concave in 𝜔 (strictly decreasing and strictly
concave in 𝜔 for 𝜔 > 𝜔∗(𝑠0)). The function “extends to the left” when the endowment share 𝑠0

is higher.15 If 𝜔∗(𝑠0) > 𝜔min(𝑠0) (or equivalently, if 𝑠0 > 𝛿/(𝛽 + 𝛿)), then 𝑉∗(𝑠0, 𝜔) is
independent of 𝜔 for 𝜔 ≤ 𝜔∗(𝑠0). Hence, in the absence of constraint (4), the planner would
choose 𝜔(𝑠0) = 𝜔∗(𝑠0) because this gives the highest utility to the initial old while maximizing
the payoff to the planner. In this case, the allocation given by condition (5) holds in every period.
In contrast, when �̄�0 > 𝜔∗(𝑠0), the consumption share of the young is lower than implied by
condition (5), but only in the initial period. There is immediate convergence to the stationary
first-best distribution in one period.

Since the payoff to the planner depends both on 𝑠 and 𝜔, the stationary distribution is a pair
(𝑠, 𝜔∗(𝑠)), the endowment share and the corresponding utility promised to the old. We note
for future reference that this stationary distribution has 𝐼 values, one for each endowment state,
with the probability of each pair given by 𝜋(𝑠).

Deterministic Economy. We now consider a deterministic economy with a constant growth
rate 𝛾 and endowment share 𝑠. Unlike the previous benchmark, we assume that the planner

14 The proof of Proposition 3 is omitted because it follows from standard arguments. Nonetheless, the properties
of the function𝑉∗ (𝑠0, 𝜔) are mirrored in Proposition 4 and Lemma 1, given below, which do respect the participation
constraints of the young.

15 That is, for 𝑠 > 𝑟 where 𝜔min (𝑠) < 𝜔min (𝑟), 𝑉∗ (𝑠, 𝜔) = 𝑉∗ (𝑟, 𝜔) for 𝜔 ∈ Ω(𝑟).
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respects the participation constraint of both the young and the old. Let �̂� ≔ log(𝑠) + 𝛽 log(1− 𝑠)
be the lifetime endowment utility. Assumption 2, together with the strict concavity of the utility
function, implies that there is a unique 𝑐min < 𝑠, which is the lowest stationary consumption
share of the young that satisfies the participation constraint with equality. The corresponding
maximum utility of the old is 𝜔max ≔ log(1 − 𝑐min).16 Analogously to condition (5), the
first-best consumption share is 𝑐∗ = 𝛿/(𝛽 + 𝛿) and the corresponding utility of the old is
𝜔∗ ≔ log(𝛽/(𝛽 + 𝛿)). If 𝛿 is above a critical value, then 𝑐∗ > 𝑐min (or equivalently, 𝜔∗ < 𝜔max)
and the first-best consumption share is sustainable. Otherwise, the first-best consumption share
is not sustainable.

Denote the consumption share of the young at time 𝑡 by 𝑐𝑡 and the corresponding utility of
the old by 𝜔𝑡 = log(1 − 𝑐𝑡). Consider the maximization problem in (3) with the participation
constraints of the young given by log(𝑐𝑡) + 𝛽 log(1−𝑐𝑡+1) ≥ �̂�. For �̄�0 ≤ 𝜔∗, constraint (4) does
not bind and it is optimal to set 𝑐𝑡 = max{𝑐∗, 𝑐min} (or equivalently, 𝜔𝑡 = min{𝜔∗, 𝜔max}) for
all 𝑡 ≥ 0. On the other hand, consider the case where 𝜔∗ < 𝜔max and �̄�0 > 𝜔∗. Then, at 𝑡 = 0,
𝑐0 must satisfy log(1 − 𝑐0) ≥ �̄�0, which requires that 𝑐0 < 𝑐∗. Clearly, it is desirable to set 𝑐0

such that log(1 − 𝑐0) = �̄�0 and 𝑐1 = 𝑐∗. However, setting 𝑐1 = 𝑐∗ may violate the participation
constraint of the young. In this case, 𝑐1 has to be chosen to satisfy log(𝑐0) + 𝛽 log(1 − 𝑐1) = �̂�,
which implies that 𝑐1 < 𝑐∗. Repeating this argument for 𝑡 > 1 shows that given 𝑐𝑡 , the
consumption share of the young at time 𝑡 + 1 either satisfies log(𝑐𝑡) + 𝛽 log(1 − 𝑐𝑡+1) = �̂� or
𝑐𝑡+1 = 𝑐∗ if log(𝑐𝑡) + 𝛽 log(1 − 𝑐∗) ≥ �̂�. Intuitively, if the consumption share of the young
is low (or equivalently, if the utility of the old is large), then the planner would like to raise
the consumption share of the young to 𝑐∗ (or equivalently, reduce 𝜔 to 𝜔∗) as fast as possible
to improve welfare. However, if the consumption share of the next-period young is raised too
much, then the lifetime utility of the current young falls, and their participation constraint is
violated. That is, in the presence of limited enforcement, the consumption share of the young
has to be raised gradually. It is useful to express this rule in terms of a policy function 𝑔(𝜔) for
the promised utility next period, where

𝑔(𝜔) ≔

𝜔∗ for 𝜔 ∈ [𝜔min, 𝜔

𝑐],
1
𝛽
(�̂� − log (1 − exp(𝜔))) for 𝜔 ∈ (𝜔𝑐, 𝜔max],

(6)

with 𝜔min = log(1 − 𝑠) and 𝜔𝑐 ≔ log(1 − exp(�̂� − 𝛽𝜔∗)). It follows from the strict concavity
of the utility function that 𝜔𝑐 > 𝜔∗. The function 𝑔(𝜔) is increasing and convex in 𝜔, as
illustrated in Figure 1. The dynamic evolution of 𝜔𝑡 is straightforwardly derived from 𝑔(𝜔): for

16 The maximum utility of the old can be found by solving log(1 − exp(𝜔max)) + 𝛽𝜔max = �̂�. Equivalently, the
minimum consumption is found by solving log(𝑐min) + 𝛽 log(1 − 𝑐min) = �̂�.
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𝜔𝑡 ∈ [𝜔min, 𝜔
𝑐], 𝜔𝑡+1 = 𝜔∗ for all 𝑡; for 𝜔𝑡 ∈ (𝜔𝑐, 𝜔max], 𝜔𝑡+1 declines monotonically. Since

𝜔𝑐 > 𝜔∗, the process for 𝜔𝑡 converges to 𝜔∗, attaining its long-run value in finite time.

ω∗ ωmax

ω∗

ωc

g(ω)

ω
ωmin

45◦ line

g(ω)

Figure 1: Policy Function in the Deterministic Case with 𝜔max > 𝜔∗.
Note: The solid line is the deterministic policy function 𝑔(𝜔). For any initial 𝜔 ∈ [𝜔min, 𝜔max), 𝜔𝑡 converges to
𝜔∗.

Denote the per-period payoff to the planner with the first-best allocation in the absence of
uncertainty by 𝑣∗ ≔ log(𝛿/(𝛽+𝛿)) + (𝛽/𝛿)𝜔∗ and the expected discounted payoff to the planner
for 𝜔 ∈ Ω ≔ [𝜔min, 𝜔max] by 𝑉 (𝜔). The optimal solution for the deterministic case with
sustainable 𝜔∗ is summarized in the following proposition.

Proposition 4. (i) If 𝜔 ∈ [𝜔min, 𝜔
∗], then the consumption share 𝑐𝑡 = 𝛿/(𝛽 + 𝛿) for 𝑡 ≥ 0.

(ii) If 𝜔 ∈ (𝜔∗, 𝜔max], then 𝜔𝑡+1 satisfies equation (6). There exists a finite 𝑇 such that 𝜔𝑡

is monotonically decreasing for 𝑡 < 𝑇 and 𝜔𝑡 = 𝜔∗ for 𝑡 ≥ 𝑇 . Likewise, 𝑐𝑡 is monotonically
increasing for 𝑡 < 𝑇 and 𝑐𝑡 = 𝑐∗ for 𝑡 ≥ 𝑇 . (iii) The value function 𝑉 :Ω → R is equal
to 𝑉 (𝜔) = 𝑣∗/(1 − 𝛿) for 𝜔 ∈ [𝜔min, 𝜔

∗] and is strictly decreasing and strictly concave for
𝜔 ∈ (𝜔∗, 𝜔max] with lim𝜔→𝜔max 𝑉𝜔 (𝜔) = −∞.

The optimal solution is either stationary or converges monotonically to a stationary point
within finite time, with 𝑐𝑇 = 𝑐∗ for 𝑇 large enough. Hence, the long-run distribution of 𝜔 is
degenerate and for the case where 𝑐∗ > 𝑐min, it has a single mass point at {𝜔∗}.

In the following sections, we show that when the first-best allocation violates a participation
constraint of the young, and there is endowment risk, the optimal sustainable intergenerational
insurance is history dependent even in the long run, and the ergodic set of utilities has more
than 𝐼 values. The benchmarks highlight that both limited enforcement of transfers and risk are
necessary for this result.
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3 Optimal Sustainable Intergenerational Insurance

In this section, we characterize the optimal intergenerational insurance rule under uncertainty
when the planner respects the participation constraints of both the young and the old. Recall
that shocks to growth rates and endowment shares are i.i.d. (Assumption 1) and that the
optimal sustainable consumption shares depend only on the history of endowment share 𝑠𝑡

(Proposition 1). We rule out the case in which the first-best outcome is sustainable and assume
that the first-best allocation violates the participation constraint of the young in at least one
state. Since the lifetime endowment utility of an agent is increasing in 𝑠, we assume that:

Assumption 4. log(𝑐∗(𝐼)) + 𝛽∑
𝑟 𝜋(𝑟) log(1 − 𝑐∗(𝑟)) < log(𝑠(𝐼)) + 𝛽∑

𝑟 𝜋(𝑟) log(1 − 𝑟).

We reformulate the optimization problem described in Definition 2 recursively using the
utility 𝜔 promised to the old as a state variable. Let 𝜔𝑟 denote the state-contingent utility
promised to the current young for their old age when the endowment share of the young next
period is 𝑟. Then, the planner’s optimization problem is:

𝑉 (𝑠, 𝜔) = max
{𝑐,(𝜔𝑟 )𝑟∈I }∈Φ(𝑠,𝜔)

𝛽

𝛿
log(1 − 𝑐) + log(𝑐) + 𝛿

∑︁
𝑟
𝜋(𝑟)𝑉 (𝑟, 𝜔𝑟), (P1)

where Φ(𝑠, 𝜔) is the constraint set given by the following inequalities:

log(1 − 𝑐) ≥ 𝜔, (7)

𝑐 ≤ 𝑠, (8)

𝜔𝑟 ≤ 𝜔max(𝑟) for each 𝑟 ∈ I, (9)

𝜔𝑟 ≥ 𝜔min(𝑟) for each 𝑟 ∈ I, (10)

log(𝑐) + 𝛽
∑︁

𝑟
𝜋(𝑟)𝜔𝑟 ≥ log(𝑠) + 𝛽

∑︁
𝑟
𝜋(𝑟) log(1 − 𝑟). (11)

The recursive formulation is similar to the promised-utility approach used in models with
infinitely-lived agents (see, for example, Green, 1987, Spear and Srivastava, 1987, Thomas
and Worrall, 1988, Atkeson and Lucas Jr., 1992). At each period, the planner chooses the
consumption share of the young, 𝑐, and the state-contingent promise of utility, 𝜔𝑟 . The
state variable 𝜔 embodies information about the history of shocks. Constraint (7) is the
promise-keeping constraint, which requires the current old to receive at least what they were
promised previously. It is analogous to constraint (4), but it is now required to hold in every
period. Constraint (8) is the participation constraint for the old, which stipulates that the old
do not transfer to the young. Constraints (9) and (10) require that the promise is feasible:
𝜔𝑟 ∈ Ω(𝑟) ≔ [𝜔min(𝑟), 𝜔max(𝑟)]. Finally, constraint (11) requires that the consumption share
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of the young and the promises made to them for their old age at least match the expected lifetime
utility they would receive in autarky.

It is easy to check that the constraint set Φ(𝑠, 𝜔) is convex and compact. Denote the state
vector by 𝑥 ≔ (𝑠, 𝜔) and let 𝑓 (𝑥) and 𝑔𝑟 (𝑥) for 𝑟 ∈ I be the optimal consumption share of the
young and the state-contingent promise of utility of the old next period. The compactness of
the constraint set guarantees the existence of the optimal policies, and the strict concavity of the
utility function guarantees uniqueness. The optimal allocation is solved recursively. Starting
at date 𝑡 = 0 with a given state 𝑠0 and given 𝜔0 ∈ Ω(𝑠0), solve the optimization problem P1
to obtain the policy functions 𝑓 (𝑠0, 𝜔0) and 𝑔𝑟 (𝑠0, 𝜔0) for 𝑟 ∈ I. For the second period, solve
the maximization problem again using the endowment share realized at date 1, say 𝑟 , together
with the utility promise from the first period, 𝑔𝑟 (𝑠0, 𝜔0), in equation (7). The process is then
repeated for subsequent periods.

The function 𝑉 (𝑠, 𝜔) cannot be found by standard contraction mapping arguments starting
from an arbitrary value function because the value function associated with the autarkic alloca-
tion also satisfies the functional equation of problem P1. However, a similar iterative approach
can be used to find the value function, starting from the first-best value functions 𝑉∗(𝑠, 𝜔)
derived in Proposition 3. Following the arguments of Thomas and Worrall (1994), the limit of
this iterative mapping is the optimal value function 𝑉 (𝑠, 𝜔). Proposition 3 established that the
first-best value function is nonincreasing, differentiable, and concave in 𝜔, and the limit value
function inherits these properties.

Lemma 1. (i) The value function 𝑉 (𝑠, ·):Ω(𝑠) → R is nonincreasing, concave and con-
tinuously differentiable in 𝜔, with 𝜔min(𝑠) < 𝜔max(𝑠). (ii) For each 𝑠 ∈ I, there ex-
ists an 𝜔0(𝑠) ∈ [𝜔min(𝑠), 𝜔∗(𝑠)] such that 𝑉 (𝑠, 𝜔) is strictly decreasing and strictly con-
cave for 𝜔 > 𝜔0(𝑠). If 𝜔∗(𝑠) > 𝜔min(𝑠), then 𝜔0(𝑠) < 𝜔∗(𝑠) for some state 𝑠 and
𝜔0(𝑠) > 𝜔min(𝑠) for some (possibly different) state. For 𝜔 ∈ [𝜔min(𝑠), 𝜔0(𝑠)], 𝑉𝜔 (𝑠, 𝜔) = 0.
If 𝜔∗(𝑠) = 𝜔min(𝑠), then 𝜔0(𝑠) = 𝜔∗(𝑠) and 𝑉𝜔 (𝑠, 𝜔0(𝑠)) ≤ (𝛽/𝛿) − ((1 − 𝑠)/𝑠) ≤ 0. In either
case, lim𝜔→𝜔max (𝑠) 𝑉𝜔 (𝑠, 𝜔) = −(𝛽/𝛿)𝜆max(𝑠), where 𝜆max(𝑠) ∈ R+ ∪ {∞}. (iii) The upper
bounds satisfy 𝜔max(𝑠(𝑖)) < 𝜔max(𝑠(𝑖 − 1)) < 0. Similarly, 𝜔0(𝑠(𝑖)) ≤ 𝜔0(𝑠(𝑖 − 1)) with strict
inequality for at least one 𝑖 = 2, . . . , 𝐼.

The strict concavity of the objective function and the convexity of the constraint set guarantee
the concavity of 𝑉 (𝑠, 𝜔) in 𝜔 with 𝜔0(𝑠) = sup{𝜔 | 𝑉𝜔 (𝑠, 𝜔) = 0} if 𝑉𝜔 (𝑠, 𝜔min(𝑠)) = 0
and 𝜔0(𝑠) = 𝜔min(𝑠) otherwise. Since the old will not transfer to the young voluntarily,
𝜔min(𝑠) = log(1−𝑠), the autarkic utility of the old, which is decreasing in 𝑠. The upper endpoints
𝜔max(𝑠) are determined by the system of equations log(1−exp(𝜔max(𝑠)))+𝛽

∑
𝑟 𝜋(𝑟)𝜔max(𝑟) =

log(𝑠) + 𝛽∑
𝑟 𝜋(𝑟) log(1 − 𝑟). It can be checked that there is a unique nontrivial solution with
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𝜔max(𝑠) decreasing with 𝑠 and 𝜔min(𝑠) < 𝜔max(𝑠) < 0. Likewise, 𝜔0(𝑠) is decreasing in 𝑠.
Differentiability of𝑉 (𝑠, 𝜔) with respect to 𝜔 follows because the constraint set satisfies a linear
independence constraint qualification when 𝜔 ∈ [𝜔min(𝑠), 𝜔max(𝑠)). The left-hand derivative
of 𝑉 (𝑠, 𝜔) with respect to 𝜔, evaluated at 𝜔max(𝑠), is finite if 𝜔max(𝑠) is part of the ergodic set
and is infinite otherwise.

Remark 2. Recall that �̄�0 is the exogenous target utility given in constraint (4). Given the defi-
nition of𝜔0(𝑠), the planner chooses the initial utility of the old such that𝜔0 = max{𝜔0(𝑠0), �̄�0}.
If the planner is not subject to constraint (4) and can freely choose the initial utility, then the
planner sets 𝜔0 = 𝜔0(𝑠0). Note that each 𝜔0(𝑠) is an optimal choice and depends on all of the
model’s primitives.

Remark 3. The optimal sustainable intergenerational insurance is not renegotiation-proof
because, in the case of default, it would be possible to offer the promised utility 𝜔0(𝑟) instead
of 𝜔min(𝑟) without diminishing the planner’s payoff. A renegotiation-proof outcome can then
be derived by replacing constraint (11) with log(𝑐) + 𝛽∑

𝑟 𝜋(𝑟)𝜔𝑟 ≥ log(𝑠) + 𝛽∑
𝑟 𝜋(𝑟)𝜔0(𝑟).

Since 𝜔0(𝑟) is determined as part of the solution and appears in the constraint, a fixed-point
argument similar to that used by Thomas and Worrall (1994) is required to find the solution.
Although imposing this tighter constraint restricts risk sharing, the structure of the constrained
optimization problem is not affected. Therefore, we expect that the qualitative properties of the
optimal solution are substantially unchanged.

Optimal Policy Functions. We now turn to the properties of the policy functions 𝑓 (𝑥) and
𝑔𝑟 (𝑥). Given the differentiability of the value function, the first-order conditions for the pro-
gramming problem P1 are:

𝑓 (𝑥) = min
{

𝛿(1 + 𝜇(𝑥))
𝛽(1 + 𝜆(𝑥)) + 𝛿(1 + 𝜇(𝑥)) , 𝑠

}
(12)

𝑉𝜔 (𝑟, 𝑔𝑟 (𝑥)) = −
𝛽

𝛿
(𝜇(𝑥) − 𝜉𝑟 (𝑥) + 𝜂𝑟 (𝑥)) for each 𝑟 ∈ I, (13)

where (𝛽/𝛿)𝜆(𝑥) is the multiplier corresponding to the promise-keeping constraint of equa-
tion (7), 𝛽𝜋(𝑟)𝜉𝑟 (𝑥) are the multipliers corresponding to the upper bound on the promised
utility (9), 𝛽𝜋(𝑟)𝜂𝑟 (𝑥) are the multipliers corresponding to the lower bound on the promised
utility (10), and 𝜇(𝑥) is the multiplier corresponding to the participation constraints of the
young (11). Given the concavity of the programming problem, conditions (12) and (13) are
both necessary and sufficient. There is also an envelope condition:

𝑉𝜔 (𝑥) = −
𝛽

𝛿
𝜆(𝑥). (14)
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Taken together, equations (13) and (14) imply the following updating property:

𝜆(𝑥′) = 𝜇(𝑥) − 𝜉𝑟 (𝑥) + 𝜂𝑟 (𝑥), (15)

where 𝑥′ = (𝑟, 𝑔𝑟 (𝑥)) is the next-period state variable. Equation (15) is easy to interpret. For
simplicity, suppose that the boundary constraints on the promised utility do not bind, that is,
𝜉𝑟 (𝑥) = 𝜂𝑟 (𝑥) = 0. From equation (13), it follows that 𝛿(1 + 𝜇(𝑥)) is the relative weight placed
on the utility of the young and 𝛽(1 + 𝜆(𝑥)) is the relative weight placed on the utility of the old.
The updating property in equation (15) shows that the relative weight placed on the utility of
the old corresponds to the tightness of the participation constraint they faced when they were
young.

The following two Lemmas describe the properties of the policy functions.17

Lemma 2. (i) The policy function 𝑔𝑟 (𝑠, ·):Ω(𝑠) → [𝜔0(𝑟), 𝜔max(𝑟)] is continuous and in-
creasing in 𝜔 and strictly increasing for 𝑔𝑟 (𝑠, 𝜔) ∈ (𝜔0(𝑟), 𝜔max(𝑟)). (ii) For each 𝑟 ∈ I and
𝜔 ∈ (𝜔min(𝑠(𝑖−1)), 𝜔max(𝑠(𝑖))), 𝑔𝑟 (𝑠(𝑖), 𝜔) ≥ 𝑔𝑟 (𝑠(𝑖−1), 𝜔) with strict inequality for at least
one 𝑖 = 2, . . . , 𝐼. For each 𝑠 ∈ I, 𝑔𝑟 (𝑖) (𝑠, 𝜔) ≤ 𝑔𝑟 (𝑖−1) (𝑠, 𝜔) with strict inequality for at least
one 𝑖 = 2, . . . , 𝐼. (iii) For endowment state 1, there is a critical value 𝜔𝑐 > 𝜔0(1) such that
𝑔𝑟 (1, 𝜔) = 𝜔0(𝑟) for 𝜔 ∈ [𝜔0(1), 𝜔𝑐] and 𝑟 ∈ I. (iv) For each 𝑠 ∈ I, there is a unique fixed
point 𝜔 𝑓 (𝑠) = min{𝜔∗(𝑠), 𝜔max(𝑠)} of the mapping 𝑔𝑠 (𝑠, 𝜔) with 𝑔𝑠 (𝑠, 𝜔) > 𝜔 for 𝜔 < 𝜔 𝑓 (𝑠)
and 𝑔𝑠 (𝑠, 𝜔) < 𝜔 for 𝜔 > 𝜔 𝑓 (𝑠). For endowment state 𝐼, 𝜔 𝑓 (𝐼) > 𝜔0(𝐼).

Lemma 3. (i) The policy function 𝑓 (𝑠, ·):Ω(𝑠) → (0, 𝑠] where 𝑓 (𝑠, 𝜔) = 1 − exp(𝑤) for
𝜔 ≥ 𝜔0(𝑠) and 𝑓 (𝑠, 𝜔) = 1 − exp(𝜔0(𝑠)) for 𝜔 < 𝜔0(𝑠). (ii) 𝑐0(𝑠) ≔ 𝑓 (𝑠, 𝜔0(𝑠)) where
𝑐0(𝑠(𝑖)) ≥ 𝑐0(𝑠(𝑖 − 1)) with strict inequality for at least one 𝑖 = 2, . . . , 𝐼. (iii) At the fixed point
𝜔 𝑓 (𝑠), 𝑓 (𝑠, 𝜔 𝑓 (𝑠)) ≤ 𝑐∗(𝑠) with equality for 𝜔 𝑓 (𝑠) < 𝜔max(𝑠).

The main properties of Lemmas 2 and 3 follow straightforwardly from the objective to share
risk subject to the participation constraints. The policy function 𝑔𝑟 (𝑠, 𝜔) is increasing in 𝜔

(Lemma 2(i)), whereas 𝑓 (𝑠, 𝜔) is decreasing in 𝜔 (Lemma 3(i)). A higher promise to the
current old means a lower consumption share for the current young and, for endowment states
in which the participation constraint binds, this requires a higher future promise of utility for
their old age as compensation. The consumption share of the young depends only indirectly
on 𝑠 when 𝜔 = 𝜔0(𝑠) or 𝜔 = 𝜔max(𝑠) (Lemma 3(ii)), whereas 𝑔𝑟 (𝜔, 𝑠) is increasing in 𝑠 and
decreasing in 𝑟 (Lemma 2(ii)). The policy function 𝑔𝑟 (𝜔, 𝑠) is increasing in 𝑠 because a higher
endowment share of the young today is associated with a larger risk-sharing transfer, which, if
the participation constraint is binding, has to be compensated by a higher promise for tomorrow.

17 To avoid the clumsy terminology of nondecreasing or weakly increasing, we describe a function as increasing
if it is weakly increasing and highlight cases where a function is strictly increasing.
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Likewise, the future promise is decreasing in 𝑟 because a higher endowment share of the young
tomorrow is associated with a higher consumption share when the participation constraint binds
and, hence, a lower consumption share of the old tomorrow. Since the optimum is nontrivial and
differs from the first best, there is at least one strict inequality in the relations of Lemma 2(ii),
so that, 𝑔𝑟 (𝑠(𝐼), 𝜔) > 𝑔𝑟 (𝑠(1), 𝜔) and 𝑔𝑟 (𝐼) (𝑠, 𝜔) < 𝑔𝑟 (1) (𝑠, 𝜔).

Lemma 2(iii) shows that there is a range of𝜔 above𝜔0(1) such that the participation constraint
of the young does not bind and hence, 𝑔𝑟 (1, 𝜔) = 𝜔0(𝑟) in this range. This is analogous to the
deterministic case discussed in Section 2 where the policy function has an initial flat section
(see, Figure 1). More generally, when the participation constraint of the young does not bind, it
follows from equation (14) that 𝑔𝑟 (𝑥) = 𝜔0(𝑟) and 𝑥′ = (𝑟, 𝜔0(𝑟)). In this case, we say that the
promise is reset. The promise is reset to the value that gives the most to the current old while
maximizing the payoff to the planner. Lemma 2(iii) shows that resetting, in particular, occurs
in state 1 for any 𝜔 ∈ [𝜔0(1), 𝜔𝑐].

Lemmas 2(iv) and Lemma 3(iii) describe what happens when the same endowment share
repeats in successive periods. Suppose for simplicity that 𝜂𝑠 (𝑥) = 𝜉𝑠 (𝑥) = 0 and 𝑓 (𝑥) > 𝑠.
From equations (13) and (14), 𝜇(𝑠, 𝜔 𝑓 (𝑠)) = 𝜆(𝑠, 𝜔 𝑓 (𝑠)) where 𝜔 𝑓 (𝑠) is the fixed point of
𝑔𝑠 (𝑠, 𝜔). Using equation (12), this implies that the consumption share is first best and hence,
𝜔 𝑓 (𝑠) = 𝜔∗(𝑠). Furthermore, 𝑔𝑠 (𝑠, 𝜔) > 𝜔 for 𝜔 < 𝜔 𝑓 (𝑠) and 𝑔𝑠 (𝑠, 𝜔) < 𝜔 for 𝜔 > 𝜔 𝑓 (𝑠).
That is, when the same endowment share repeats, the promise falls if the previous promise was
above the first best and rises if the previous promise was below the first best. It follows that the
policy function 𝑔𝑠 (𝑠, 𝜔) > 𝜔 cuts the 45◦ line once from above. To understand this, consider
some 𝜔 > 𝜔 𝑓 (𝑠) and suppose, to the contrary, that 𝑔𝑠 (𝑠, 𝜔) ≥ 𝜔. In this case, equations (13)
and (14) imply that 𝜇(𝑠, 𝜔 𝑓 (𝑠)) > 𝜆(𝑠, 𝜔 𝑓 (𝑠)), which in turn implies 𝜔 < 𝜔∗(𝑠) = 𝜔 𝑓 (𝑠) from
equation (12), a contradiction. A similar argument shows that 𝑔𝑠 (𝑠, 𝜔) > 𝜔 for 𝜔 < 𝜔 𝑓 (𝑠).18

The implications of Lemmas 2 and 3 can be illustrated by considering a particular sam-
ple path of the consumption share generated for a given history of endowment shares 𝑠𝑇 =

(𝑠0, 𝑠1, . . . , 𝑠𝑇 ). The sample path of the consumption share is constructed iteratively from the
policy functions 𝑓 (𝑠, 𝜔) and 𝑔𝑟 (𝑠, 𝜔) starting with 𝑥0 = (𝑠0, 𝜔0) as follows: 𝑐𝑡 = 𝑓 𝑡 (𝑠𝑡 , 𝑥0) ≔
𝑓 (𝑠𝑡 , 𝑔𝑡 (𝑠𝑡 , 𝑥0)), where 𝑔𝑡 (𝑠𝑡 , 𝑥0) ≔ 𝑔𝑠𝑡 (𝑠𝑡−1, 𝑔

𝑡−1(𝑠𝑡−1, 𝑥0)) and 𝑔0(𝑠0, 𝑥0) = 𝜔0.

Figure 2 depicts such a sample path in a three-state example and illustrates three important
properties.19 First, the optimal sustainable consumption share fluctuates above and below the

18 The argument can be extended to the case where the nonnegativity and upper bound constraints bind, and a
complete proof of Lemma 2 is provided in the Online Appendix.

19 The example has 𝛽 = 𝛿 = 0.975, 𝑠(1) = 0.5, 𝑠(2) = 0.625 and 𝑠(3) = 0.8125, with probabilities 𝜋(1) = 0.5,
𝜋(2) = 0.25 and 𝜋(3) = 0.25. The first best is 𝑐∗ (𝑠) = 0.5 for each state.
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Figure 2: Sample Path of the Young Consumption Share.
Note: The illustration is for a case where 𝐼 = 3 and 𝛽 = 𝛿 (with first-best consumption share of 1/2). The shade of
the dots indicates the state 𝑠𝑡 : light gray for 𝑠𝑡 = 𝑠(1), mid gray for 𝑠𝑡 = 𝑠(2) and dark gray for 𝑠𝑡 = 𝑠(3). The
case illustrated has 𝑠0 = 𝑠(1) and 𝜔0 = 𝜔0 (1) = − log(2).

first-best level of 1/2.20 Second, the path is history dependent. That is, the consumption share
varies both with the current endowment state and the history of shocks. For example, the
endowment share 𝑠𝑡 = 𝑠(3) occurs at 𝑡 = 8 and 𝑡 = 13, but the consumption share differs at
the two dates. When state 3 occurs, the participation constraint of the young binds, and hence,
a higher future utility must be promised to ensure that they are willing to share more of their
current endowment. Subsequent realizations of state 3 exacerbate the situation because the
young of the next generation must also deliver on past promises, meaning that the consumption
share of the young falls when state 3 repeats. This property is evident in Figure 2 where 𝑐𝑡 falls
when state 3 repeats (𝑡 = 2, 3 and 𝑡 = 11, 12, 13). This implies that the consumption share is
not necessarily monotonic in the endowment. For example, the consumption share at 𝑡 = 4,
when the endowment share is 𝑠4 = 𝑠(2), is lower than the consumption share at 𝑡 = 9, when
the endowment share is 𝑠9 = 𝑠(1) < 𝑠(2). This non-monotonicity occurs because the promise
made to the old for date 𝑡 = 4 is higher than that made for date 𝑡 = 9. Third, there are points in
time when the consumption share returns to the same value in the same state. For example, this
happens at 𝑡 = 7, which has the same state (state 1) and same consumption as at 𝑡 = 0. In this
case, there is resetting. The path of the consumption share is the same following resetting if
the same sequence of endowment shares occurs. Note that the definition of the resetting points
is not unique. For example, there is resetting also at 𝑡 = 1, 8, 10, when state 3 occurs after
state 1. Before resetting occurs, the effect of a shock persists. However, once resetting occurs,
the history of shocks is forgotten, and the subsequent sample path is identical when the same
sequence of states occurs. That is, the sample paths between resettings are probabilistically

20 By Lemma 1(ii), 𝜔0 (𝑠) ≤ 𝜔∗ (𝑠). By Assumption 3, 𝜔∗ (1) = 𝜔min (1). Hence, 𝜔0 (1) = 𝜔∗ (1). Since
𝑔1 (𝑠, 𝜔) is increasing in 𝜔, the promise is above the first-best level (or equivalently, the consumption share is below
the first-best level) in state 1. From Lemma 2(iii), 𝜔0 (𝐼) < 𝜔∗ (𝐼) and therefore, for low values of 𝜔, the promise
is below the first-best level (or equivalently, the consumption share is above the first-best level) in state 𝐼.
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identical. This property is used in the next section to establish convergence to a unique invariant
distribution.

4 Convergence to the Invariant Distribution

This section considers the long-run distribution of the pair 𝑥 = (𝑠, 𝜔). It shows that there is
a unique and countable ergodic set 𝐸 with cardinality |𝐸 | > 𝐼 and strong convergence to the
corresponding invariant distribution. Let Ω = ∪𝑟∈IΩ(𝑟) and X = I × Ω. The future evolution
of 𝑥 is a Markov chain defined by the transition function 𝑃(𝑥, 𝐴 × 𝐵) ≔ Pr{𝑥𝑡+1 ∈ 𝐴 × 𝐵 |
𝑥𝑡 = 𝑥} = ∑

𝑟∈𝐴 𝜋(𝑟)1𝐵𝑔𝑟 (𝑥) where 𝐴 ⊆ I, 𝐵 ⊆ Ω and 1𝐵𝑔𝑟 (𝑥) = 1 if 𝑔𝑟 (𝑥) ∈ 𝐵 and zero
otherwise. The chain starts from 𝑥0 = (𝑠0, 𝜔0) with an initial promise 𝜔0 = max{𝜔0(𝑠0), �̄�0}.

The monotonicity and resetting properties of Lemma 2 imply that starting from any 𝑥𝑡 ,
a sequence of 𝑘 consecutive state 1s (where the endowment share is 𝑠(1)) leads to 𝑥𝑡+𝑘 =

(1, 𝜔0(1)) for a finite 𝑘 . This is because 𝑔1(1, 𝜔) < 𝜔, so that repetition of state 1 leads to a
decrease in 𝜔 and since 𝑔1(1, 𝜔) = 𝜔0(1) for some 𝜔 > 𝜔0(1), 𝜔 falls to 𝜔0(1) in finite time.
In this case, we say that 𝑥 is reset to (1, 𝜔0(1)) at time 𝑡 + 𝑘 . Since the probability of the state 1
is 𝜋(1) > 0, the probability of a history of 𝑘 consecutive state 1s is 𝜋(1)𝑘 > 0. An immediate
consequence is that Condition M of Stokey et al. (1989, page 348) is satisfied, and hence, there
is strong convergence in the uniform metric to a unique invariant probability measure 𝜙(𝑋) for
𝑋 ∈ X.21

Since there is a positive probability that 𝑥 is reset to (1, 𝜔0(1)) in finite time, the Markov
chain for 𝑥 is regenerative and (1, 𝜔0(1)) is a regeneration point (see, for example, Foss
et al., 2018). For simplicity, suppose first that the process starts at 𝑥0 = (1, 𝜔0(1)). Recall
that 𝑔𝑡 (𝑠𝑡 , 𝑥0) = 𝑔𝑠𝑡 (𝑠𝑡−1, 𝑔

𝑡−1(𝑠𝑡−1, 𝑥0)) where 𝑔0(1, 𝑥0) = 𝜔0(1). Let 𝑟𝑥 ≔ min{𝑘 ≥ 1 |
(𝑠, 𝑔𝑘 ((𝑠𝑘−1, 𝑠), 𝑥0)) = 𝑥} denote the first time that the process is equal to 𝑥 starting from 𝑥0.
Then 𝑟𝑥0 is the first regeneration time, the first time after the initial period at which 𝑥0 reoccurs.
Any sample path of promises can be divided into different blocks, with each block starting
at a regeneration time. This can be seen in Figure 2 where the first regeneration time occurs
at 𝑡 = 7. Although the blocks between regeneration points are not identical, the strong Markov
property ensures that they are i.i.d. At each regeneration time, past shocks are forgotten, and
the future evolution of 𝑥 is probabilistically identical. The regeneration times are also i.i.d.
and the expected regeneration time is 𝜑 ≔ E0 [𝑟𝑥0], the same for any block. Moreover, 𝜑 is

21 Condition M is satisfied because there is a 𝑘 ≥ 1 and an 𝜖 > 0 such that the 𝑘-step transition function
𝑃𝑘 (𝑥, {(1, 𝜔0 (1))}) > 𝜖 for any 𝑥 ∈ X. In this case, (1, 𝜔0 (1)) is an atom of the Markov chain. Açikgöz
(2018), Foss et al. (2018), and Zhu (2020) use similar arguments to establish strong convergence in the Aiyagari
precautionary savings model with heterogeneous agents.
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finite since all positive probability paths must have a sequence of endowment states leading
to 𝑥0 = (1, 𝜔0(1)) as described above.

Now consider a starting point 𝑥0 = (𝑖, 𝜔0(𝑖)) for some initial state 𝑠0 = 𝑠(𝑖). Given that
𝑔𝑖 (1, 𝜔0(1)) = 𝜔0(𝑖) by Lemma 2(iii), a positive probability path that leads back to 𝑥0 is
constructed by a sequence of consecutive state 1s, as outlined above, followed by state 𝑖. Since
the transition from state 1 to state 𝑖 occurs with positive probability, (𝑖, 𝜔0(𝑖)) is a regeneration
point, and the blocks between these regeneration points are also probabilistically identical. As
discussed in Remark 2, in the absence of constraint (4), the planner sets 𝜔0 = 𝜔0(𝑖) and the
process starts in the ergodic set. However, if constraint (4) must be respected and �̄�0 > 𝜔0(𝑖),
then 𝑥0 = (𝑖, �̄�0) and the process may start outside of the ergodic set. In this case, there is still
a positive probability path back to a resetting point (𝑖, 𝜔0(𝑖)). The only difference is that the
first block in the regenerative process is different from subsequent blocks (which all start from
(𝑖, 𝜔0(𝑖))). However, this does not change the convergence properties of the process.

Let 𝑅𝑥 ≔ Pr(𝑟𝑥 < ∞) be the probability of attaining the pair 𝑥 = (𝑠, 𝜔) in finite time starting
from 𝑥0. If 𝑅𝑥 > 0, then 𝑥 is said to be accessible from 𝑥0. Since 𝑥0 = (𝑖, 𝜔0(𝑖)) has a positive
probability mass and the set of endowment states I is finite and time is discrete, the associated
set 𝐸 ≔ {𝑥 | 𝑅𝑥 > 0} is countable. Moreover, the set 𝐸 is an equivalence class because every
𝑥 ∈ 𝐸 is accessible from 𝑥0, and there is a path from every accessible 𝑥 back to 𝑥0. Therefore,
𝐸 is an absorbing set, that is, 𝑃(𝑥, 𝐸) = 1 for all 𝑥 ∈ 𝐸 , and since no proper subset of 𝐸 has
this property, it is ergodic (see, for example, Stokey et al., 1989, chapter 11). Let 𝜑𝑥 denote the
expected return time to 𝑥 where 𝜑𝑥0 ≡ 𝜑. With 𝜑 finite, it follows that 𝑅𝑥 = 1 and each 𝜑𝑥 is
finite, that is, each 𝑥 ∈ 𝐸 is positive recurrent.

Since the ergodic set 𝐸 is countable, standard results on the convergence of positive recurrent
Markov chains apply. To state these results, let 𝑃 denote the transition matrix with elements
𝑃(𝑥, 𝑥′) = 𝜋(𝑟)1𝜔𝑟

𝑔𝑟 (𝑥) where 𝑥 = (𝑠, 𝜔) and 𝑥′ = (𝑟, 𝑔𝑟 (𝑥)). Similarly, let 𝑃𝑘 (𝑥, 𝑥′) be the
elements of the corresponding 𝑘-period transition matrix.

Proposition 5. (i) There is pointwise convergence to a unique and non-degenerate invariant
distribution 𝜙 = 𝜙𝑃 where for each 𝑥 ∈ 𝐸 , 𝜙(𝑥) = lim𝑘→∞ 𝑃𝑘 (·, 𝑥) = 𝜑−1

𝑥 . (ii) The invariant
distribution is the limit of the iteration 𝜙𝑡+1(𝑥′) =

∑
𝑥∈𝐸 𝑃(𝑥, 𝑥′)𝜙𝑡 (𝑥) for any given 𝜙0(𝑥).

(iii) The cardinality |𝐸 | > 𝐼.

Parts (i) and (ii) of Proposition 5 are standard and show convergence to a unique invariant
distribution where the probability of each 𝑥 ∈ 𝐸 is the inverse of the expected return time.
The invariant distribution can be computed iteratively, given knowledge of the policy functions.
In particular, for 𝑠0 = 𝑠(𝑖), the invariant distribution can be computed starting from an initial
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distribution 𝜙0(𝑥) = 1 if 𝑥 = (𝑖, 𝜔0(𝑖)) and 𝜙0(𝑥) = 0 otherwise.22 Part (iii) shows that the
cardinality of the ergodic set is greater than 𝐼. That is, at the invariant distribution, there are
multiple promised utilities associated with particular states. Hence, the history of endowment
shocks affects the consumption allocation even in the long run. This result stands in contrast
to the two benchmarks considered in Section 2. If transfers are enforced, or if there is no risk,
then convergence is to an ergodic set with a cardinality equal to the cardinality of the set of
endowment states.

Since Lemma 2(i) and (ii) show that 𝑔𝑟 (𝑠, 𝜔) is increasing in 𝑠 and𝜔, 𝑔𝑟 (𝐼, 𝜔∗(𝐼)) is the largest
promise that can be reached in state 𝑟 starting with 𝑥0 = (𝑖, 𝜔0(𝑖)). If 𝑔𝑟 (𝐼, 𝜔∗(𝐼)) < 𝜔max(𝑟),
then any 𝑥 = (𝑟, 𝜔) with 𝜔 ∈ (𝑔𝑟 (𝐼, 𝜔∗(𝐼)), 𝜔max(𝑟)) is not accessible from 𝑥0. Therefore, such
an 𝑥 is transitory and is not part of the ergodic set. In Section 8, we compute the ergodic set
and the invariant distribution in examples with 𝑔𝑟 (𝐼, 𝜔∗(𝐼)) < 𝜔max(𝑟).23

Remark 4. The convergence result and all the results of Section 3 apply when preferences
exhibit constant relative risk aversion. They also hold for any concave utility function if the
aggregate endowment is constant. Lemmas 2 and 3 and Proposition 5 remain valid if there
is no growth but the aggregate endowment is state-dependent, except that the policy functions
cannot be ordered by the endowment state (see, Lancia et al., 2022, for details).

5 Debt

In this section, we reinterpret the optimal transfer to the old as debt. Suppose the planner issues
one-period state-contingent bonds, which trade at the corresponding state prices. The planner
uses the revenue generated by bond sales to fund the transfer to the old, balancing the budget
by taxing or subsidizing the young. Given bond prices and taxes, the young buy the correct
quantity of state-contingent bonds to finance their optimal old-age consumption. With this
interpretation, the dynamics of debt and the fiscal reaction function can be examined.

The Debt Policy Function. It is convenient to measure debt relative to the endowment share
of the current young. Then, the optimal debt 𝑑 (𝑥) satisfies 𝜔 = log(1− 𝑠 + 𝑠𝑑 (𝑥)), so that 𝑑 (𝑥)
is increasing in 𝜔.24 Let 𝑑0(𝑠) ≔ 𝑑 (𝑠, 𝜔0(𝑠)) ≥ 0 denote the minimum debt at the optimal
solution when the endowment share of the young is 𝑠. Debt 𝑑 ∈ D = [𝑑min, 𝑑max] where the
minimum debt 𝑑min ≔ min𝑟 𝑑0(𝑟) and the maximum debt 𝑑max is determined as the nontrivial

22 The convergence results hold for any initial distribution 𝜙0 (𝐴) even if 𝐴 ⊈ 𝐸 since eventually, once
regeneration occurs, all subsequent promises belong to the ergodic set.

23 The ergodic set and invariant distribution are difficult to characterize. In some cases, however, the invariant
distribution is a transformation of a geometric distribution with a denumerable ergodic set, that is, |𝐸 | = ℵ0.

24 For brevity, in what follows, we often refer to 𝑑 (𝑥) simply as outstanding debt without the caveat that it is
measured relative to the endowment share of the young.
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solution of log(1 − 𝑑max) + 𝛽
∑

𝑟 𝜋(𝑟) (log(1 − 𝑟 + 𝑟𝑑max) − log(1 − 𝑟)) = 0. We refer to 𝑑max

as the debt limit and 𝑑max − 𝑑 as the fiscal space (see, for example, Ghosh et al., 2013).25 It
follows straightforwardly that 𝑑max < 1, analogously to the result of Lemma 1 that 𝜔max(𝑠) < 0.
The debt policy function 𝑏𝑟 :D → D determines the optimal debt next period when the current
debt is 𝑑 and the endowment share of the young next period is 𝑟. The properties of the debt
policy functions are summarized in the following corollary to Lemmas 2 and 3.

Corollary 1. (i) The debt policy function 𝑏𝑟 :D → D is continuous in 𝑑 with 𝑏𝑟 (𝑑) = 𝑑0(𝑟)
for 𝑑 ≤ 𝑑𝑐 and 𝑏𝑟 (𝑑) strictly increasing for 𝑑 > 𝑑𝑐. The debt threshold 𝑑𝑐 satisfies
𝑑𝑐 = 1 − exp(−𝛽∑

𝑟 𝜋(𝑟) (log(1 − 𝑟 + 𝑟𝑑0(𝑟)) − log(1 − 𝑟))) ∈ (𝑑min, 𝑑max) with 𝑑min = 0
and 𝑑max < 1. (ii) For 𝑑 ∈ D, 𝑏𝑟 (𝑖) (𝑑) ≥ 𝑏𝑟 (𝑖−1) (𝑑) with strict inequality for at least
one 𝑖 = 2, . . . , 𝐼. (iii) For each 𝑟 ∈ I, there is a unique fixed point 𝑑 𝑓 (𝑟) of the mapping 𝑏𝑟 (𝑑)
where 𝑑 𝑓 (𝑟) = min{𝑑∗(𝑟), 𝑑max}, 𝑑∗(𝑟) = 1− 𝑐∗(𝑟)/𝑟 is the first-best debt, and 𝑑 𝑓 (𝑟 (𝐼)) > 𝑑𝑐.

Corollary 1 reveals the benefits of measuring debt relative to the endowment share of the
young. First, the debt policy functions depend on the current debt 𝑑 but are independent of the
current endowment share 𝑠. Second, there is a common threshold debt 𝑑𝑐, below which the
debt policy function is flat and above which it is strictly increasing. For 𝑑 ≤ 𝑑𝑐, the debt policy
function 𝑏𝑟 (𝑑) = 𝑑0(𝑟). Lemmas 2 and 3 show why the debt policy function is independent
of 𝑠. When the participation constraint of the young binds, that is, when constraints (7) and (11)
hold as equalities, the policy function for the promised utility 𝑔𝑟 (𝑠, 𝜔) is an increasing function
of log(𝑠) − log(1 − exp(𝜔)). With exp(𝜔) = 1 − 𝑠 + 𝑠𝑑, 𝑔𝑟 (𝑠, 𝜔) is an increasing function
of 𝑑, and hence, the debt policy function depends on the current debt and endowment state next
period.26

Part (i) of Corollary 1 shows that the threshold 𝑑𝑐 is determined by setting 𝑏𝑟 (𝑑) = 𝑑0(𝑟)
for each 𝑟. By Assumptions 3, 𝑑min = 0 and by Assumption 4, 𝑑𝑐 < 𝑑∗(𝐼). Part (ii) shows
that 𝑏𝑟 (𝑑), and consequently, 𝑟𝑏𝑟 (𝑑), are increasing in 𝑟. Since the consumption share of the
old decreases with 𝑟, the transfer to the old, 𝑟𝑏𝑟 (𝑑), is positively correlated with the marginal
utility of consumption of the old. This positive correlation occurs because debt provides partial
insurance. Note that the consumption share of the old decreases with 𝑟 for a given debt 𝑑,
while it increases with 𝑑 for a fixed 𝑟 . Therefore, in comparing two endowment states, the
consumption share of the old may be higher when the young have a higher endowment share if

25 The debt limit is different from the maximum sustainable debt (see, for example, Collard et al., 2015). The
maximal sustainable debt focuses on the limit that external investors are willing to lend to a government, taking
into account the probability of default. Typically, it is calculated using a fixed rule for government taxes and
expenditure and a constant interest rate.

26 For CRRA preferences with a coefficient of risk aversion greater than one, the same property applies with a
different normalization of debt that depends on the coefficient of risk aversion.



INTERGENERATIONAL INSURANCE 27

the debt is sufficiently high. Part (iii) follows directly from Lemma 2(iv) and the fixed point of
the mapping 𝑏𝑟 (𝑑) corresponds to the first-best debt.

Figure 3: Panel A – Debt Dynamics. Panel B – Fiscal Reaction Function.
Note: The illustration is for the case 𝐼 = 3 corresponding to the example in Figure 2. Panel A plots the optimal
debt rule as a function of 𝑑. The light gray line is 𝑏1 (𝑑), the dark gray line is 𝑏2 (𝑑), and the black line is 𝑏3 (𝑑).
The level 𝑑∗ (3) is the largest sustainable debt, and 𝑑∗ (1) is the lowest sustainable debt within the ergodic set. In
Panel B, the fiscal reaction function is the difference between BR(𝑑), the dark gray line, and 𝑑, the light gray line.

The Dynamics of Debt. The dynamics of debt are derived from the debt policy functions
described in Corollary 1 and the history of endowment shares. Panel A of Figure 3 plots the
debt policy functions corresponding to the same three-state example illustrated in Figure 2. For
𝑑 ≤ 𝑑𝑐, the debt policy function is independent of the current debt 𝑑 and depends only on the
endowment share of the young next period. In particular, 𝑑0(1) = 𝑑∗(1) and 𝑑0(2) = 𝑑∗(2), so
that the consumption share is first best in states 1 and 2, whereas in state 3, the participation
constraint binds, limiting the transfer from the young and hence, 𝑑0(3) < 𝑑∗(3). For 𝑑 > 𝑑𝑐,
debt falls when the endowment share of the young next period is 𝑟 (1) or 𝑟 (2). If, for example,
there are enough consecutive occurrences of the endowment state 1, then debt falls to zero.
Since such sequences occur with positive probability, debt is reset to zero periodically. If, on
the other hand, the endowment share of the young next period is 𝑟 (3), then the debt rises for
𝑑 < 𝑑∗(3) but falls for 𝑑 > 𝑑∗(3). Thus, any debt 𝑑 > 𝑑∗(3) is transitory and cannot occur
in the long run.27 In summary, debt will rise or fall depending on the endowment share of the
young next period and the current debt that encapsulates the history of endowment shares.

Fiscal Reaction Function. The fiscal reaction function shows how the tax rate depends on
debt. Since the promised utility and debt are monotonically related, we abuse notation and
rewrite the state space as 𝑥 = (𝑠, 𝑑). With logarithmic preferences, the intertemporal marginal
rate of substitution is 𝑚(𝑥, 𝑥′) = 𝛽𝑠(1 − 𝑑)/(1 − 𝑟 (1 − 𝑏𝑟 (𝑑))), where 𝑥 = (𝑠, 𝑑) is the current
state and 𝑥′ = (𝑟, 𝑏𝑟 (𝑑)) is the next-period state. Since the endowment shares are i.i.d., the
transition probability is 𝜋(𝑥, 𝑥′) = 𝜋(𝑟) and given debt 𝑑, the current young can be thought as

27 In general, if 𝑑∗ (𝐼) < 𝑑max, then any 𝑑 ∈ [𝑑∗ (𝐼), 𝑑max) is transitory.
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buying 𝑟𝑏𝑟 (𝑑) bonds contingent on a next-period endowment share of 𝑟 at the state price of
𝑞(𝑥, 𝑥′) = 𝜋(𝑟)𝑚(𝑥, 𝑥′). The bond purchases generate a bond revenue for the planner given by:

BR(𝑑) ≔
(
1
𝑠

) ∑︁
𝑟
𝑞(𝑥, 𝑥′)𝑟𝑏𝑟 (𝑑) = 𝛽

∑︁
𝑟∈I

𝜋(𝑟)
(

1 − 𝑑

1 − 𝑟 (1 − 𝑏𝑟 (𝑑))

)
𝑟𝑏𝑟 (𝑑).

The planner finances the current debt 𝑑 by a combination of taxes (or subsidies) on the young
and bond revenue BR(𝑑). Hence, the budget constraint of the planner is:

𝜏(𝑑) = 𝑑 − BR(𝑑), (16)

where 𝜏(𝑑) is the tax rate on the young, measured as a share of their endowment. We refer to
𝜏(𝑑) as the fiscal reaction function and 𝑠𝜏(𝑑) as the primary fiscal balance. A positive value of
𝑠𝜏(𝑑) corresponds to a primary fiscal surplus, whereas a negative value of 𝑠𝜏(𝑑) corresponds
to a primary fiscal deficit.

Panel B of Figure 3 plots the outstanding debt 𝑑 and the bond revenue BR(𝑑) with the fiscal
reaction function 𝜏(𝑑) given by the difference between the two lines. The properties of BR(𝑑)
are complex because 𝑏𝑟 (𝑑) is increasing in 𝑑 whereas the state price 𝑞((𝑠, 𝑑), (𝑟, 𝑏𝑟 (𝑑))) is
decreasing in both 𝑑 and 𝑏𝑟 . By Proposition 2, there are transfers next-period for any debt
𝑑 < 𝑑max and hence, BR(0) is strictly positive. Moreover, since 𝑏𝑟 (𝑑) is constant for debt
below the threshold level, BR(𝑑) decreases linearly in 𝑑 for 𝑑 < 𝑑𝑐. Hence, the fiscal reaction
function 𝜏(𝑑) increases linearly in 𝑑 for 𝑑 < 𝑑𝑐. There is an intersection point 𝑑 where 𝜏(𝑑) = 0.
For 𝑑 < 𝑑, bond revenue exceeds the current debt, and the planner subsidizes the young, that
is, there is a primary fiscal deficit. For 𝑑 > 𝑑, bond revenue is insufficient to cover the current
debt, and the planner taxes the young, that is, there is a primary fiscal surplus. For 𝑑 > 𝑑𝑐, a
rise in 𝑑, that is, a reduction in the fiscal space, leads to more bond issuance but the price of the
bonds decreases. Thus, the net effect of a change in 𝑑 on bond revenue is generally ambiguous.
For the example illustrated in Panel B, the fiscal reaction function 𝜏(𝑑) is increasing in 𝑑 but
initially at a slower rate for debt above the threshold level and then at a higher rate when debt is
large.

The situation depicted in Figure 3 contrasts with the two benchmarks discussed in Section 2.
At the first best, the debt policy function is 𝑏𝑟 (𝑑) = 𝑑∗(𝑟) independent of 𝑑. Hence, the debt
policy functions in Panel A of Figure 3 are horizontal lines with fixed points at 𝑑∗(𝑟). There
are no dynamics of debt except in the initial period, although debt varies with the endowment
share. Ignoring the nonnegativity constraint on transfers, the first-best bond revenue function is
linearly decreasing in debt, resulting in a fiscal reaction function that is linearly increasing.28

28 It can be shown that BR∗ (𝑑) = (𝑎 − 1) (1 − 𝑑) where 𝑎 = (1 − 𝛿) + (𝛽 + 𝛿)E𝑠𝑠 and E𝑠𝑠 is the expected
endowment share. Hence, the fiscal reaction function is 𝜏∗ (𝑑) = (1 − 𝑎) + 𝑎𝑑. Since E𝑠𝑠 > 𝛿/(𝛽 + 𝛿), 𝑎 > 1.
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In the deterministic case, the debt policy function is a transformation of the policy function in
Figure 1 with a critical debt 𝑑𝑐 = (exp(𝜔𝑐) − (1 − 𝑠))/𝑠. If the initial debt is above 𝑑𝑐, debt
falls, and once it reaches or falls below 𝑑𝑐, the debt next period equals the first-best level 𝑑∗.
The dynamics of debt are transitory, with debt reaching the fixed point 𝑑∗ in finite time. Along
the transition path, debt falls, and the price of debt rises. These two offsetting effects make it
possible for bond revenue to rise or fall during the transition.

The two benchmarks show that enforcement frictions lead to the nonlinearity of the fiscal
reaction function. By showing how this arises within an optimizing framework, the paper
contributes to the literature that examines and provides evidence of this nonlinearity (see, for
example Mendoza and Ostry, 2008, Ghosh et al., 2013, among others).

6 Asset Pricing Implications

In this section, we examine the asset pricing implications of the model.29 In an overlapping
generations model, the growth-adjusted stochastic discount factor is given by the intertemporal
marginal rate of substitution 𝑚(𝑥, 𝑥′) ≔ 𝛽𝑢𝑐 (1 − 𝑐(𝑥′))/𝑢𝑐 (𝑐(𝑥)) where 𝑥 is the current state,
𝑥′ is the state next period, 𝑢𝑐 (𝑐(𝑥)) is the marginal utility of the current young and 𝑢𝑐 (1− 𝑐(𝑥′))
is their marginal utility when old. This stochastic discount factor can be decomposed into two
components:

𝑚(𝑥, 𝑥′) = 𝛿

(
𝑢𝑐 (𝑐(𝑥′))
𝑢𝑐 (𝑐(𝑥))

)
︸           ︷︷           ︸

𝑚𝐴(𝑥,𝑥′)

(
𝛽

𝛿

𝑢𝑐 (1 − 𝑐(𝑥′))
𝑢𝑐 (𝑐(𝑥′))

)
︸                 ︷︷                 ︸

𝑚𝐵 (𝑥,𝑥′)

. (17)

The first component 𝑚𝐴 (𝑥, 𝑥′) represents risk sharing across two adjacent generations of the
young and the second component 𝑚𝐵 (𝑥, 𝑥′) represents risk sharing between the young and the
old at a given date. In a representative agent model, 𝑚(𝑥, 𝑥′) = 𝑚𝐴 (𝑥, 𝑥′) and the variability
in the stochastic discount factor is determined by the variability of consumption, which in an
endowment economy depends on the variability of the aggregate endowment. In contrast, in an
overlapping generations model, if there is variability in the degree of risk sharing between the
young and the old, then there is variability in 𝑚𝐵 (𝑥, 𝑥′), which interacts with the variability in
𝑚𝐴 (𝑥, 𝑥′) with consequent implications for asset pricing. In the optimal sustainable intergen-
erational insurance, the variability of 𝑚𝐵 (𝑥, 𝑥′) is determined by the first-order condition (12)
and the updating rule (15). This variability depends on the current endowment share and the

29 We follow several authors in addressing asset pricing in overlapping generations models (see, for example,
Huberman, 1984, Huffman, 1986, Labadie, 1986) and Gârleanu and Panageas (2023) for a recent contribution.
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outstanding debt. To simplify the discussion, we confine attention to states in the ergodic set.30
We also assume that the bounds on debt do not bind. In this case, the first best exhibits complete
insurance with the consumption share fully independent of the endowment state.31

Let 𝑄 denote the matrix of state prices 𝑞(𝑥, 𝑥′) = 𝜋(𝑟)𝑚(𝑥, 𝑥′) where 𝑥 = (𝑠, 𝑑) and
𝑥′ = (𝑟, 𝑏𝑟 (𝑑)), and let 𝜚 and 𝜓 be the Perron root and corresponding eigenvector of 𝑄.
The Ross Recovery Theorem (Ross, 2015) shows that the 𝑘-period stochastic discount factor
𝑚𝑘 (𝑥, 𝑥′) = 𝜚𝑘𝜓(𝑥)/𝜓(𝑥′)where 𝜚 and𝜓(𝑥) can be interpreted as the discount factor and inverse
marginal utility of a pseudo-representative agent. Using the first-order condition (12) and the
updating rule (15), 𝑓 (𝑥′)/(1− 𝑓 (𝑥′)) = (𝛿/𝛽) (1+𝜇(𝑥′))/(1+𝜇(𝑥)) where 𝑓 (𝑥) = 𝑠(1−𝑑) is the
consumption share of the young and 𝜇(𝑥) is the multiplier on the corresponding participation
constraint. To ease notation, let 𝜈(𝑥) ≔ 1 + 𝜇(𝑥) and 𝜈max ≔ max𝑥 𝜈(𝑥). Since we show below
that 𝜚 = 𝛿, it follows from equation (17) that 𝜓(𝑥) = 𝑓 (𝑥)/𝜈(𝑥).32 The unit price of a 𝑘-period
discount bond in state 𝑥, 𝑝𝑘 (𝑥), is given by the corresponding row sum of 𝑄𝑘 , the 𝑘-fold matrix
power of 𝑄. The corresponding yield is 𝑦𝑘 (𝑥)≔−(1/𝑘) log(𝑝𝑘 (𝑥)) and the yield on the long
bond is 𝑦∞(𝑥) ≔ lim𝑘→∞ 𝑦𝑘 (𝑥).

Martin and Ross (2019) shows that |𝑦𝑘 (𝑥) − 𝑦∞(𝑥) | ≤ (1/𝑘)Υ forΥ≔ log(𝜓max/𝜓min) where
𝜓max and 𝜓min are the maximum and minimum values of 𝜓. That is, Υ measures the range of
the eigenvector and bounds the deviation of the yield from its long-run value. A low value of Υ
means that the yield curve is relatively flat and that yields are not very sensitive to debt.33

The matrix 𝑄 is the growth-adjusted or de-trended state price matrix. Let 𝑞𝑘+(𝑥, 𝑥′) and
𝑚𝑘
+(𝑥, 𝑥′) denote the unadjusted state prices and marginal rate of substitution conditional on

state 𝑥 when the state 𝑘-periods ahead is 𝑥′ and the growth factor is 𝛾. It can be checked
that 𝑞𝑘+(𝑥, 𝑥′) = 𝜍 (𝛾)�̄�−𝑘 (�̄�/𝛾)𝑞𝑘 (𝑥, 𝑥′) and 𝑚𝑘

+(𝑥, 𝑥′) = �̄�−𝑘 (�̄�/𝛾)𝑚𝑘 (𝑥, 𝑥′) where 𝑞𝑘 (𝑥, 𝑥′) =

30 Limiting the analysis to the ergodic set is justified for two reasons. First, there is convergence to the ergodic
set within finite time, as shown in Section 4. Second, absent constraint (4), the planner sets the initial debt to 𝑑min,
which lies in the ergodic set. Furthermore, for simplicity and because it corresponds to our numerical procedures,
we assume that the ergodic set is finite. Nevertheless, it is possible to adapt the arguments to the denumerable case
or even more general state spaces (see, for example, Hansen and Scheinkman, 2009, Christensen, 2017).

31 Although it is restrictive to assume that the bounds on debt are non-binding, it simplifies the analysis, and we
will note how results differ when the bounds bind.

32 The multiplicative decomposition of 𝜓(𝑥) into the components 𝑓 (𝑥) and 1/𝜈(𝑥) is reminiscent of a number
of other asset pricing models (see, for example, Bansal and Lehmann, 1997).

33 The bound Υ provides a measure of the variability of the yields. Two alternative measures used to assess
how risk is shared are the insurance coefficient (see, for example, Kaplan and Violante, 2010) and a consumption
equivalent welfare change (see, for example, Song et al., 2015). We discuss these alternatives in Part C of the
Supplementary Appendix and show that these two measures share similar comparative static properties with the
bound Υ.
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𝜋𝑘 (𝑥, 𝑥′)𝑚𝑘 (𝑥, 𝑥′).34 Letting 𝑦𝑘+(𝑥) be the yield on the 𝑘-period bond in the unadjusted case,
we can establish the following proposition.

Proposition 6. For each 𝑥 ∈ 𝐸: (i) The yield on a 𝑘-period bond 𝑦𝑘+(𝑥) = 𝑦𝑘 (𝑥) + log(�̄�).
(ii) The yield on the long bond 𝑦∞+ (𝑥) = 𝑦∞ + log(�̄�) with 𝑦∞ = − log(𝛿). (iii) The yield
𝑦𝑘 (𝑥) is increasing in 𝑑 for each 𝑠 and 𝑘 . (iv) The long-short spreads on yields sat-
isfy 𝑦∞ − 𝑦1(1, 𝑑∗(1)) > 0 > 𝑦∞ − 𝑦1(𝐼, 𝑑∗(𝐼)). (v) The measure Υ = log(𝜈max) where
𝜈max = 𝜈(𝐼, 𝑑∗(𝐼)).

Part (i) of Proposition 6 shows that the difference between the yields in the growth-adjusted
and unadjusted cases is simply the average growth rate as measured by log(�̄�), independently
of the current state 𝑥 or the time horizon 𝑘 . This independence follows from Assumption 1
that the growth shocks are i.i.d., meaning that each generation faces the same growth risk. A
similar result, that market risk premia are unaffected by market incompleteness, is established by
Krueger and Lustig (2010) in a model with infinitely-lived agents and uninsurable idiosyncratic
as well as aggregate risk. Part (ii) follows from the result of Martin and Ross (2019) that
𝑦∞ = − log(𝜚), independently of 𝑥 and the fact that 𝜚 = 𝛿 if the upper bound and nonnegativity
constraints do not bind.35 To understand Part (iii), note that the consumption share of the young
is decreasing in 𝑑 and that, since 𝑏𝑟 (𝑑) is increasing in 𝑑 from Corollary 1, the consumption
share of the old next period is increasing in 𝑑. Consequently, the stochastic discount factor
𝑚(𝑥, 𝑥′) decreases in 𝑑. Since the transition probabilities do not depend on 𝑑, the price of the
one-period discount bond is decreasing in 𝑑, or, equivalently, its yield is increasing in 𝑑. Thus,
an agent born into a generation with higher debt faces higher one-period yields. Since bond
prices are linked recursively, this property holds for bonds of any maturity.

Part (iv) of Proposition 6 shows that the long-short spread 𝑦∞ − 𝑦1(𝑥) is positive when the
young have a low endowment share and the debt is low. In this case, it follows from Section 5
that debt is likely to increase in the future with a corresponding increase in yields. Conversely,
the spread is negative when the young have a high endowment share, and the debt is high,
in which case, both debt and yields are likely to fall in the future. Part (v) shows that Υ is
determined by the multiplier 𝜈max on the participation constraint corresponding to the fixed
point of the debt policy function when the endowment share of the young is the largest. That is,
the bound on the variability of the yield curve is determined by the tightness of the participation
constraint at the largest debt in the ergodic set.

34 With stochastic growth, the Ross Recovery Theorem does not recover the true probability transition matrix
𝜋𝑘 (𝑥, 𝑥′). Instead, it recovers a transition matrix where probabilities are weighted by the relative growth factors
(see, for example, Hansen and Scheinkman, 2012).

35 If the upper bound constraint does not bind, then 𝜚 ≤ 𝛿 and if the nonnegativity constraints do not bind, then
𝜚 ≥ 𝛿.
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To help understand the results of Proposition 6, consider the first-best and deterministic
benchmarks of Section 2. In the first best, the debt policy functions are constants, and the yield
curve is flat with 𝑦𝑘+(𝑥) = − log(𝛿) + log(�̄�) and Υ = 0. Despite the flat yield curve, the risk
premium on the aggregate risk is positive because the return on debt is high when the growth
rate is high. Specifically, the expected return on a one-period bond is E𝛾𝛾/𝛿, while the risk-free
rate is �̄�/𝛿. Thus, the risk premium is (E𝛾𝛾 − �̄�)/𝛿, which is strictly positive when the growth
shocks are non-degenerate. A Lucas tree or any other asset that pays a share of the aggregate
endowment will carry this positive risk premium, so that the risk premium on aggregate risk
corresponds to the risk premium on debt with complete insurance. In the deterministic case,
the risk premium is zero. However, along the transition path, as debt falls, the yield 𝑦𝑘 (𝑑)
decreases to its long-run value of 𝑦∞ = − log(𝛿) + log(𝛾), where 𝛾 is the deterministic growth
rate. Thus, Υ > 0 in the transition, even though there is no risk.36

7 Debt Valuation

The budget constraint in equation (16) can be iterated forward to show that current debt equals
the present value of all future primary surpluses.37 As pointed out by Bohn (1995), this present
value depends on the risk premium on debt. In this section, we focus on the multiplicative risk
premium on debt because it is the negative of the covariance of the stochastic discount factor and
the return on debt and because it is independent of the endowment share. When there is a growth
shock 𝛾, the return on debt is 𝑅+(𝑥, 𝑥′) = 𝑟𝑏𝑟 (𝑑)𝛾𝑒/(𝑠BR(𝑑)𝑒), where 𝑠BR(𝑑)𝑒 is the value of
bonds issued today. The multiplicative risk premium is MRP+(𝑑) = (�̄�+(𝑥) − 𝑅

𝑓
+ (𝑥))/𝑅

𝑓
+ (𝑥)

where �̄�+(𝑥) is the expected return on debt and 𝑅
𝑓
+ (𝑥) is the risk-free rate on interest in state 𝑥.

Denote the corresponding growth-adjusted values by MRP(𝑑), �̄�(𝑥) and 𝑅 𝑓 (𝑥). As we have
shown in Section 6, the risk premium on debt with complete insurance equals the risk premium
on aggregate risk and we denote the common multiplicative risk premium by MRP∗. The
following proposition shows that the multiplicative risk premium has a linear decomposition
that depends on the growth-adjusted multiplicative risk premium and the multiplicative risk
premium with complete insurance.

Proposition 7. The multiplicative risk premium MRP+(𝑑) = MRP(𝑑) + 𝛼(𝑑)MRP∗, where
𝛼(𝑑) = �̄�(𝑥)/𝑅 𝑓 (𝑥). The components satisfy: (i) MRP∗ = (E𝛾𝛾 − �̄�)/�̄� ≥ 0; (ii) MRP(𝑑) < 0;
and (iii) 0 < 𝛼(𝑑) < 1.

36 The ergodic set is degenerate at 𝑑∗ in the deterministic case. Once debt reaches this level, the yield curve is
flat.

37 Jiang et al. (2023) define fiscal capacity as the present value of future surpluses. Since, in our model, debt
is determined optimally, there is no mispricing or bubble component, and debt and fiscal capacity are equivalent
in this sense. Other authors often use the term fiscal capacity more broadly to encompass both the debt limit and
fiscal space.
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The decomposition of MRP+(𝑑) into components depending on MRP(𝑑) and MRP∗ is
analogous to the result of Proposition 6 that the conditional yield is the sum of a growth-
adjusted yield and a component corresponding to the average growth rate, and similarly follows
from Assumption 1 that the shocks to growth and the endowment share are independent of
each other and i.i.d. Part (i) of Proposition 7 shows that MRP∗ is nonnegative. As discussed
in Section 6, MRP∗ is strictly positive if the growth shocks are non-degenerate. To understand
Part (ii), note that the return 𝑅(𝑥, 𝑥′) = 𝑟𝑏𝑟 (𝑑)/(𝑠BR(𝑑)) is increasing in 𝑟, from Part (ii) of
Corollary 1. Moreover, the consumption share of the old is decreasing in 𝑟, from Lemma 2, and
hence, the stochastic discount factor 𝑚(𝑥, 𝑥′) is increasing in 𝑟. Thus, the returns are high when
the marginal utility of consumption of the old is high, resulting in a positive covariance term
and, correspondingly, a negative growth-adjusted multiplicative risk premium. By comparison,
with complete insurance, the stochastic discount factor is constant so that its covariance with
the returns is zero, and hence, MRP(𝑑) = 0. As noted in equation (17), the stochastic discount
factor comprises two components that measure risk sharing across two adjacent generations of
the young and risk sharing between the young and the old. The first component 𝑚𝐴 (𝑥, 𝑥′) is
decreasing in 𝑟 , whereas the second component 𝑚𝐵 (𝑥, 𝑥′) is increasing in 𝑟. In a representative
agent model, only 𝑚𝐴 (𝑥, 𝑥′) is present, and high debt returns are associated with a low marginal
utility of consumption of the young, generating a positive risk premium. In contrast, 𝑚𝐵 (𝑥, 𝑥′)
dominates in the overlapping generations model, making debt a negative beta asset.

Part (iii) of Proposition 7 shows that 𝛼(𝑑) < 1, and hence, the gap MRP∗ −MRP+(𝑑) > 0
for each 𝑑. That is, the multiplicative risk premium on debt is lower than the multiplicative
risk premium on aggregate risk. Using U.S. data, Jiang et al. (2021) show that the observed
value of debt is higher than the present value of future primary surpluses when discounted using
the risk premium on aggregate risk, a debt valuation puzzle. Convenience yields, seigniorage
and other service flow values have been offered as potential explanations for this puzzle. Our
results suggest an additional explanation. In the presence of enforcement frictions, risk sharing
is partial and debt serves as a hedge against idiosyncratic risk, lowering the risk premium and
raising the value of debt.38

Part (iii) of Proposition 7 also shows that the gap MRP∗ −MRP+(𝑑) depends on 𝑑, evolving
according to the dynamics of debt outlined in Section 5. For 𝑑 ≤ 𝑑𝑐, this gap is independent
of 𝑑. For 𝑑 > 𝑑𝑐, the effect of debt on the size of the gap is ambiguous. From Proposition 6, the
risk-free interest rate increases with debt. Therefore, the gap rises or falls depending on whether

38 Jiang et al. (2022) examine how to manufacture risk-free government debt. With the primary surplus
disaggregated into tax and expenditure components, the risk premium on debt is a weighted average of the risk
premiums on taxes and expenditure. Consequently, the risk premium on debt can be eliminated, but only at the
cost of making taxes or expenditures less cyclical. Since we do not distinguish between taxes and expenditure,
the risk premium on the primary surplus equals the risk premium on debt, and making debt risk-free may not be
feasible or desirable.
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the expected return on debt increases with debt at a faster or slower rate than the risk-free interest
rate. Although the overall effect is ambiguous, in the example of Section 8, MRP∗ −MRP+(𝑑)
decreases with 𝑑 for 𝑑 > 𝑑𝑐.

8 Two-State Example

Finding the optimal sustainable intergenerational insurance is complex because it involves
solving the functional equation of problem P1. In this section, we present an example with
𝐼 = 2 that can be solved using a simple shooting algorithm.39 For this case, we solve for the
invariant distribution and derive a closed-form solution for the Martin-Ross measure Υ.

Suppose there are two possible endowment shares for the young: 𝑠(1) = 𝜅 − 𝜖 (1 − 𝜋)/𝜋 and
𝑠(2) = 𝜅 + 𝜖 , where 𝜋 = 𝜋(1), 𝜅 ≥ 1/2 and 𝜖 > 0. The young are poor in state 1 and rich in
state 2, and an increase in 𝜖 is a mean-preserving spread of the risk. By Assumptions 3 and 4,
𝑑∗(2) > 𝑑0(2) > 𝑑𝑐 > 𝑑0(1) = 𝑑∗(1) = 0. By Corollary 1, the debt policy functions satisfy
𝑏2(𝑑) > 𝑏1(𝑑). We make two additional assumptions.

Assumption 5. (i) 𝑑∗(2) < 𝑑max; and (ii) 𝑏1(𝑑∗(2)) < 𝑑𝑐.

Part (i) of Assumption 5 implies that the upper debt limit never binds. By Part (ii), debt is
below 𝑑𝑐 whenever state 1 occurs. In such a case, the history of endowment states is forgotten
once state 1 occurs and the dynamics of debt depend only on the number of consecutive state 2s
in the most recent history, starting from the resetting level 𝑑0(𝑟). The longer is the sequence of
state 2s, the larger is the level of debt, approaching 𝑑∗(2) if state 2 is repeated infinitely often.
The set of parameter values that satisfy Assumption 5, as well as Assumptions 2-4, is nonempty
with the following belonging to this set.

Example 1. 𝛿 = 𝛽 = exp(−1/75), 𝜋 = 1/2, 𝜅 = 3/5, and 𝜖 = 1/10.

To simplify notation, let 𝑑 (𝑛) (𝑠) be the debt in state 𝑠 after 𝑛 consecutive state 2s, where
𝑑 (0) (𝑠) = 𝑑0(𝑠) are the resetting levels and lim𝑛→∞ 𝑑 (𝑛) (2) = 𝑑∗(2). Under Assumption 5, the
invariant distribution of debt is a transformation of a geometric distribution and the bound Υ

has a closed-form solution.

Proposition 8. Under Assumption 5: (i) The ergodic set 𝐸 = {(𝑠, 𝑑 (𝑛) (𝑠))𝑛≥0,𝑠=1,2} with a
probability mass function 𝜙(𝑠, 𝑑 (𝑛) (𝑠)) = 𝜙(𝑠, 𝑑0(𝑠)) (1− 𝜋)𝑛 for 𝑛 ≥ 1 where 𝜙(1, 𝑑0(1)) = 𝜋2

39 Part E of the Supplementary Appendix provides details of the shooting algorithm.
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Figure 4: Panel A – Invariant Distribution Panel B – Multiplicative Risk Premium.
Note: Panel A plots the invariant distribution 𝜙(𝑠, 𝑑 (𝑛) (𝑠)) for 𝑠 = 1 (light gray bars) and 𝑠 = 2 (dark gray bars)
for the parameters of Example 1. Panel B plots %ΔMRP(𝑑) = (MRP∗ −MRP+ (𝑑))/MRP∗ for the values of 𝑑 in
the ergodic set for the parameters of Example 1. Light gray dots correspond to state 1 and the dark gray dots to
state 2. The size of each dot indicates the frequency of occurrence.

and 𝜙(2, 𝑑0(2)) = 𝜋(1 − 𝜋). (ii) Υ = log(𝛿/𝛽) − log(𝜒−1 − 1) where

𝜒 =

(
𝛿
𝛽

) 1−𝜋
𝜋

(
𝛽+𝛿
𝛿

) 1+𝛽 (1−𝜋 )
𝛽𝜋 (𝜅 + 𝜖)

1
𝛽𝜋 (1 − 𝜅 − 𝜖)

1−𝜋
𝜋

(
1 − 𝜅 + 𝜖 1−𝜋

𝜋

)
.

Since debt is reset to 𝑑0(𝑠) after an occurrence of state 1, the invariant distribution of the pair
(𝑠, 𝑑) depends only on the number of consecutive state 2s. Therefore, the invariant distribution
is a transformation of a geometric distribution. As stated in Part (i) of Proposition 8, the
invariant distribution has a probability mass of 𝜙(1, 𝑑0(1)) = 𝜋2 and 𝜙(2, 𝑑0(2)) = 𝜋(1 − 𝜋)
at the regeneration states and zero probability mass at states (𝑠, 𝑏𝑠 (𝑑∗(2))). Furthermore, low
debt levels occur only in state 1, while high levels occur only in state 2. Panel A of Figure 4
plots the invariant distribution for the parameter values of Example 1.

Part (ii) of Proposition 8 provides a closed-form solution for the bound Υ. By Proposition 6,
the bound is strictly positive and determined by the tightness of the participation constraint of
the young when 𝑥 = (2, 𝑑∗(2)). Using this closed-form solution, it is easily checked that Υ
decreases with the discount factors 𝛽 or 𝛿, that is, as either the agent or the planner becomes
more patient. Moreover, Υ decreases with the average endowment share to the young, 𝜅, and
increases with risk, 𝜖 .40

Panel B of Figure 4 illustrates the impact of debt on the risk premium in a version of
Example 1 with stochastic growth. In this example, the arithmetic mean growth rate is set to 4%

40 Part C of the Supplementary Appendix presents the comparative static properties of Υ even for parameter
values that violate Assumption 5.
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and the corresponding multiplicative risk premium is approximately 5%. Proposition 7 shows
that MRP∗ > MRP+(𝑑) and Panel B illustrates that the gap is constant when debt is low, but
decreases with debt when debt is high. As noted in Section 7, the multiplicative risk premium
may increase or decrease with debt for 𝑑 > 𝑑𝑐, depending on the relative magnitude of the
effect of debt on its return and the marginal utility of consumption of the old. In this example,
the effect on the return dominates causing the risk premium to rise with debt. Since the risk
premium on aggregate risk is independent of debt, a rise in debt narrows the gap between the
risk premiums on aggregate risk and debt.

9 Conclusion

The paper has developed a theory of intergenerational insurance in a stochastic overlapping
generations model with limited enforcement of risk-sharing transfers. Despite the stationarity of
the underlying economic environment, the generational risk is spread across future generations
in ways that cause transfers to be history dependent. There is periodic resetting, and the history
of shocks is forgotten when this occurs. By interpreting intergenerational insurance in terms
of debt, we provide a theory of the dynamics of debt that offers a new perspective on the
fiscal reaction function and the sustainability and valuation of debt. With complete insurance,
the fiscal reaction function is linear, and the risk premium on debt equals the risk premium on
aggregate risk. When there are enforcement frictions, intergenerational insurance is incomplete,
the fiscal reaction function is nonlinear, and the risk premium on debt is below the risk premium
on aggregate risk.

The results suggest several potential directions for future research. First, the qualitative
predictions about the dynamics of debt could be compared with historical data for advanced
economies, for example, with a specific focus on the baby boom and subsequent generations.
Second, the model has no heterogeneity within a generation. Enriching the demographic
structure of the model, either by having more than two overlapping generations or allowing for
heterogeneity within the same generation, would make it possible to address the interdependence
between intergenerational and intragenerational insurance. Third, to study the interplay between
self-insurance and intergenerational insurance, a technology that can transform endowments
across dates could be added. Finally, incorporating a stochastic demand for public good
provision would allow the study of the risk premia associated with the various components of
the primary surplus.
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Online Appendix (Proofs of Main Results)

This Appendix contains the proofs of the main results. Omitted proofs can be found in Part B
of the Supplementary Appendix.

Proof of Lemma 2.

(i) Since the constraint set Φ(𝑠, 𝜔) is convex and the objective function is strictly concave, the
policy function 𝑔𝑟 (𝜔, 𝑠) is single-valued and continuous in 𝜔. Let ℎ𝑠 (𝜔) ≔ −(𝛿/𝛽)𝑉𝜔 (𝑠, 𝜔)
where ℎ𝑠:Ω(𝑠) → [𝜆min(𝑠), 𝜆max(𝑠)] with 𝜆min(𝑠) = max{0, (𝛿/𝛽) ((1 − 𝑠)/𝑠) − 1}. Let
ℎ−1
𝑠 : [𝜆min(𝑠), 𝜆max(𝑠)] → Ω(𝑠) be its inverse. By the concavity of the frontier 𝑉 (𝑠, 𝜔) in 𝜔,

ℎ−1
𝑠 (𝜆) is strictly increasing in 𝜆 for 𝜆 > 𝜆min(𝑠). Suppose first that 𝜔 ≥ 𝜔0(𝑠). Hence,

from (7), 𝑓 (𝑠, 𝜔) = 1− exp(𝜔). Since 𝑔𝑟 (𝑠, 𝜔) = max{𝜔min(𝑟),min{𝜔max(𝑟), ℎ−1
𝑟 (𝜇(𝑠, 𝜔))}},

substituting into (11), there is a unique value (possibly zero) of 𝜇 that satisfies the constraint. If
𝜇(𝑠, 𝜔) = 0, then 𝑔𝑟 (𝑠, 𝜔) = 𝜔0(𝑟) for each 𝑟. If 𝜇(𝑠, 𝜔) > 0, then 𝜇(𝑠, 𝜔) is strictly increasing
in 𝜔 since 𝑓 (𝑠, 𝜔) is strictly decreasing in 𝜔 and ℎ−1

𝑟 (𝜇) is increasing in 𝜇. Thus, 𝑔𝑟 (𝑠, 𝜔) is
strictly increasing in 𝜔 for 𝑔𝑟 (𝑠, 𝜔) ∈ (𝜔0(𝑟), 𝜔max(𝑟)). If 𝜔 < 𝜔0(𝑠), then 𝜆(𝑠, 𝜔) = 0 and
hence, since 𝑓 (𝑠, 𝜔) is independent of 𝜔, 𝑔𝑟 (𝑠, 𝜔) is also independent of 𝜔.

(ii) Consider states 𝑠(𝑖) > 𝑠(𝑖 − 1), 𝑖 = 2, . . . , 𝐼. For brevity, write 𝑔𝑟 (𝑖, 𝜔) for 𝑔𝑟 (𝑠(𝑖), 𝜔)
and 𝑔𝑖 (𝑠, 𝜔) for 𝑔𝑟 (𝑖) (𝑠, 𝜔) etc. We first show that 𝜇(𝑖, 𝜔) ≥ 𝜇(𝑖 − 1, 𝜔) for 𝜔 ∈ [𝜔min(𝑖 −
1), 𝜔max(𝑖)] with a strict inequality unless 𝜇(𝑖, 𝜔) = 𝜇(𝑖 − 1, 𝜔) = 0. Suppose to the contrary
that 𝜇(𝑖 − 1, 𝜔) ≥ 𝜇(𝑖, 𝜔) > 0. It follows from (12) that 𝑔𝑟 (𝑖 − 1, 𝜔) ≥ 𝑔𝑟 (𝑖, 𝜔). Using (11) and
�̂�(𝑠) = log(𝑠) + 𝛽∑

𝑟 𝜋(𝑟) log(1 − 𝑟), gives

log( 𝑓 (𝑖 − 1, 𝜔)) − log( 𝑓 (𝑖, 𝜔)) = (�̂�(𝑖 − 1) − �̂�(𝑖)) + 𝛽
∑︁

𝑟
𝜋(𝑟) (𝑔𝑟 (𝑖, 𝜔) − 𝑔𝑟 (𝑖 − 1, 𝜔)) .

Since �̂�(𝑖 − 1) − �̂�(𝑖) < 0 and 𝑔𝑟 (𝑖, 𝜔) − 𝑔𝑟 (𝑖 − 1, 𝜔) ≤ 0, 𝑓 (𝑖, 𝜔) > 𝑓 (𝑖 − 1, 𝜔) and log(1 −
𝑓 (𝑖 − 1, 𝜔)) > log(1 − 𝑓 (𝑖, 𝜔)) ≥ 𝜔. Hence, 𝜆(𝑖 − 1, 𝜔) = 0 ≤ 𝜆(𝑖, 𝜔). However, since
𝜆(𝑖, 𝜔) ≥ 𝜆(𝑖 − 1, 𝜔) and 𝜇(𝑖 − 1, 𝜔) ≥ 𝜇(𝑖, 𝜔), it follows from (12) that 𝑓 (𝑖 − 1, 𝜔) ≥ 𝑓 (𝑖, 𝜔),
a contradiction. Hence, if 𝜇(𝑖 − 1, 𝜔) = 𝜇(𝑖, 𝜔) = 0, then 𝑔𝑟 (𝑖 − 1, 𝜔) = 𝑔𝑟 (𝑖, 𝜔) = 𝜔0(𝑟)
independently of 𝑠. If, however, 𝜇(𝑖 − 1, 𝜔) > 0, then it follows from (12) that 𝑔𝑟 (𝑖 − 1, 𝜔) <
𝑔𝑟 (𝑖, 𝜔) for𝜔 ∈ [𝜔min(𝑖−1), 𝜔max(𝑖)]. By Assumption 3, 𝜇(1, 𝜔0(1)) = 0 and by Assumption 4,
𝜇(𝐼, 𝜔0(𝐼)) > 0. Since 𝜇(𝑠, 𝜔) is increasing in 𝜔, 𝜇(𝐼, 𝜔0(𝐼)) > 0 and 𝜇(𝐼, 𝜔) > 𝜇(1, 𝜔) for
𝜔 ∈ (𝜔0(1), 𝜔max(𝐼)). Hence, from (13),𝑉𝜔 (𝑟, 𝑔𝑟 (𝐼, 𝜔)) < 𝑉𝜔 (𝑟, 𝑔𝑟 (1, 𝜔)) and therefore, from
the strict concavity of 𝑉 (𝑟, 𝜔) in 𝜔 for 𝜔 > 𝜔0(1) ≥ 𝜔0(𝑟) it follows that 𝑔𝑟 (𝐼, 𝜔) > 𝑔𝑟 (1, 𝜔).
Next, if 𝑔𝑖 (𝑥) ≤ 𝜔0(𝑖 − 1) or 𝑔𝑖−1(𝑥) ≥ 𝜔max(𝑖), then 𝑔𝑖−1(𝑥) ≥ 𝑔𝑖 (𝑥). Therefore, suppose
𝑔𝑖 (𝑥), 𝑔𝑖−1(𝑥) ∈ (𝜔0(𝑖 − 1), 𝜔max(𝑖)). We first show that 𝑉𝜔 (𝑖 − 1, 𝜔) ≥ 𝑉𝜔 (𝑖, 𝜔) for 𝜔 ∈
(𝜔0(𝑖−1), 𝜔max(𝑖)). For𝜔 > 𝜔0(𝑖−1), it follows that𝜆(𝑖−1, 𝜔) > 0 and since𝜔0(𝑖−1) ≥ 𝜔0(𝑖),
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𝜆(𝑖, 𝜔) > 0. Therefore, 𝑓 (𝑖, 𝜔) = 𝑓 (𝑖 − 1, 𝜔). In this case, it follows from above that
𝜇(𝑖, 𝜔) ≥ 𝜇(𝑖 − 1, 𝜔) with equality only if 𝜇(𝑖, 𝜔) = 𝜇(𝑖 − 1, 𝜔) = 0. Hence, it follows
from (12) that 𝜆(𝑖 − 1, 𝜔) ≤ 𝜆(𝑖, 𝜔) with strict inequality if 𝜇(𝑖, 𝜔) > 0. Using (14), it follows
that𝑉𝜔 (𝑖−1, 𝜔) ≥ 𝑉𝜔 (𝑖, 𝜔) with strict inequality if 𝜇(𝑖, 𝜔) > 0. For 𝑔𝑖 (𝑥), 𝑔𝑖−1(𝑥) > 𝜔0(𝑖−1),
𝜂𝑖 (𝑥) = 𝜂𝑖−1(𝑥) = 0 and for 𝑔𝑖 (𝑥), 𝑔𝑖−1(𝑥) < 𝜔max(𝑖), 𝜉𝑖 (𝑥) = 𝜉𝑖−1(𝑥) = 0. Hence, it follows
from (13) that 𝑉𝜔 (𝑖, 𝑔𝑖 (𝑠, 𝜔)) = 𝑉𝜔 (𝑖 − 1, 𝑔𝑖−1(𝑠, 𝜔)). Since 𝑉𝜔 (𝑖 − 1, 𝜔) ≥ 𝑉𝜔 (𝑖, 𝜔), it follows
from the concavity of 𝑉 (·, 𝜔) in 𝜔 that 𝑔𝑖−1(𝑠, 𝜔) ≥ 𝑔𝑖 (𝑠, 𝜔). The inequality is strict if
𝑉𝜔 (𝑖 − 1, 𝜔) > 𝑉𝜔 (𝑖, 𝜔) by the strict concavity of 𝑉 (·, 𝜔) in 𝜔. Since 𝜇(𝐼, 𝜔) > 𝜇(1, 𝜔) for
𝜔 ∈ (𝜔0(1), 𝜔max(𝐼)), 𝑉𝜔 (1, 𝜔) > 𝑉𝜔 (𝐼, 𝜔) and hence, 𝑔1(𝑠, 𝜔) > 𝑔𝐼 (𝑠, 𝜔).

(iii) Since 𝜇(1, 𝜔0(1)) = 0 and 𝑓 (1, 𝜔0(1)) = 𝑠(1) it follows that 𝑔𝑟 (1, 𝜔0(1)) = 𝜔0(𝑟) for
each 𝑟. Since 𝜔0(𝑟) > 𝜔min(𝑟) for at least some 𝑟, it follows that (11) is strictly slack and
there is some 𝜔𝑐 > 𝜔0(1) such that (11) is non-binding with 𝑔𝑟 (1, 𝜔) = 𝜔0(𝑟) for each 𝑟 and
𝜔 ∈ [𝜔0(1), 𝜔𝑐].

(iv) It follows from (12) that for 𝜔 = 𝜔∗(𝑠) > 𝜔min(𝑠), 𝜇(𝑠, 𝜔) = 𝜆(𝑠, 𝜔). In this case,
𝑉𝜔 (𝑠, 𝜔∗(𝑠)) = 𝑉𝜔 (𝑟, 𝑔𝑟 (𝑠, 𝜔∗(𝑠))) for 𝑔𝑟 (𝑠, 𝜔∗(𝑠)) ∈ (𝜔0(𝑟), 𝜔max(𝑟)), and, in particular,
𝑔𝑠 (𝑠, 𝜔∗(𝑠)) = 𝜔∗(𝑠), so that 𝜔∗(𝑠) is a fixed point of the mapping 𝑔𝑠 (𝑠, 𝜔). Equally, for
𝜔 < 𝜔∗(𝑠), it follows from (12) that 𝜇(𝑠, 𝜔) > 𝜆(𝑠, 𝜔), so that from the concavity of the frontier,
𝑔𝑠 (𝑠, 𝜔) > 𝜔∗(𝑠). Likewise, for 𝜔 > 𝜔∗(𝑠), it follows from (12) that 𝜇(𝑠, 𝜔) < 𝜆(𝑠, 𝜔), so that
from the concavity of the frontier, 𝑔𝑠 (𝑠, 𝜔) < 𝜔∗(𝑠). If 𝜔∗(𝑠) = 𝜔min(𝑠), then 𝑓 (𝑠, 𝜔) = 𝑠 and
𝜇(𝑠, 𝜔∗(𝑠)) = 0 by Assumption 2. Hence, 𝑔𝑠 (𝑠, 𝜔∗(𝑠)) = 𝜔∗(𝑠). Since 𝜔0(𝑠) is decreasing
in 𝑠, it follows by Assumption 4 that 𝜔0(𝐼) < 𝜔 𝑓 (𝐼) ≤ 𝜔∗.

Proof of Lemma 3.

(i) For 𝜔 > 𝜔0(𝑠), 𝜆(𝑠, 𝜔) > 0 and therefore, it follows from (7) that 𝑓 (𝑠, 𝜔) = 1 − exp(𝑤).
For 𝜔 = 𝜔0(𝑠), either 𝜆(𝑠, 𝜔0(𝑠)) > 0 or 𝜆(𝑠, 𝜔0(𝑠)) = 0. In either case, it follows from (7)
or the definition of 𝜔0(𝑠) that 𝑓 (𝑠, 𝜔0(𝑠)) = 1 − exp(𝑤0(𝑠)). For 𝜔 < 𝜔0(𝑠), it follows
that 𝜆(𝑠, 𝜔) = 0. From (12), let 𝜙(𝑠, 𝜇) = min{𝛿(1 + 𝜇)/(𝛽 + 𝛿(1 + 𝜇)), 𝑠} where 𝜙(𝑠, 𝜇) is
increasing in 𝜇 with 𝜙(𝑠, 0) = 𝑐∗(𝑠). Recall that ℎ−1

𝑟 (𝜇), defined in the proof of Lemma 2, satis-
fies 𝑉𝜔 (𝑟, ℎ−1

𝑟 (𝜇)) = −(𝛽/𝛿)𝜇 where 𝑔𝑟 (𝑠, 𝜔) = max{𝜔min(𝑟),min{𝜔max(𝑟), ℎ−1
𝑟 (𝜇(𝑠, 𝜔))}}.

Since ℎ−1
𝑟 (𝜇) is increasing in 𝜇, it follows from (11) that when 𝑓 (𝑠, 𝜔0(𝑠)) = 1 − exp(𝑤0(𝑠)),

there is a unique value of 𝜇, say 𝜇0(𝑠), that solves the constraint. Furthermore, 𝜔0(𝑠) =
log(1 − 𝜙(𝑠, 𝜇0(𝑠))).

(ii) Since �̂�(𝑖) > �̂�(𝑖 − 1), it follows from Part (i) that 𝜇0(𝑖) ≥ 𝜇0(𝑖 − 1) with strict inequality
if 𝜇0(𝑖) > 0. Therefore, since 𝜙(𝑠, 𝜇) is strictly increasing in 𝜇 and independent of 𝑠 for 𝜇 > 0,
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𝑐0(𝑖) ≥ 𝑐0(𝑖 − 1) with strict inequality if 𝜇0(𝑖) > 0. By Assumption 4, 𝜇0(𝐼) > 0 and by
Assumption 3, 𝜇0(1) = 0. Hence, 𝑐0(𝐼) > 𝑐0(1).

(iii) Lemma 2 establishes that at the fixed point, 𝜔 𝑓 (𝑠) = min{𝜔max(𝑠), 𝜔∗(𝑠)}. Hence,
𝑓 (𝑠, 𝜔 𝑓 (𝑠)) ≤ 𝑐∗(𝑠) with equality for 𝜔 𝑓 (𝑠) < 𝜔max(𝑠).

Proof of Proposition 5. Using the properties of 𝑔𝑟 (𝑥) from Lemma 2 and the argument in the
text, it follows that there is an 𝑘 ≥ 1 and 𝜖 > 0 such that 𝑃𝑘 (𝑥, {𝑥0}) > 𝜖 for each 𝑥 ∈ X and any
𝑥0. Hence, Condition M of Stokey et al. (1989, page 348) is satisfied. Therefore, Theorem 11.12
of Stokey et al. (1989) applies and there is strong convergence. Non-degeneracy with |𝐸 | > 𝐼

follows from Assumption 4. The finiteness of the return times follows from Lemma 2(iii) and
the finiteness of I. The relationship between the probability mass and the expected return times
and the pointwise convergence is standard (see, for example, Theorems 10.2.3 and 13.1.2, Meyn
and Tweedie, 2009).

Proof of Proposition 6.

(i) Since 𝑞𝑘+(𝑥, 𝑥′) = 𝜍 (𝛾)�̄�−𝑘 (�̄�/𝛾)𝑞𝑘 (𝑥, 𝑥′), summing over 𝑥′ and 𝛾, the unadjusted bond
prices are 𝑝𝑘+(𝑥) = �̄�−𝑘 𝑝𝑘 (𝑥). Hence, the yields satisfy 𝑦𝑘+(𝑥) = 𝑦𝑘 (𝑥) + log(�̄�).

(ii) It is a standard result (see, for example, Martin and Ross, 2019) that lim𝑘→∞ 𝑦𝑘 (𝑥) =
E𝜙 [log(𝑚(𝑥, 𝑥′))] = log(𝜚), where E𝜙 is the expectation taken over the invariant distribution
of 𝑥 and 𝜚 is the Perron root of the matrix 𝑄. Taking logs in equation (17), log(𝑚(𝑥, 𝑥′)) =
log(𝛽) + log(𝑐(𝑥)) − log(1−𝑐(𝑥′)). Using equations (12) and (15), assuming the non-negativity
constraints and the upper bound constraint do not bind, gives log(𝑐(𝑥′)) − log(1 − 𝑐(𝑥′)) =
− log(𝛽/𝛿) + log(𝜈(𝑥′)) − log(𝜈(𝑥)), where 𝜈(𝑥) = 1 + 𝜇(𝑥). Therefore, log(𝑚(𝑥, 𝑥′)) =

log(𝛿) + log(𝑐(𝑥)) − log(𝑐(𝑥′)) + log(𝜈(𝑥′)) − log(𝜈(𝑥)). Taking expectations at the invariant
distribution, E𝜙 [log(𝑚(𝑥, 𝑥′))] = log(𝛿). Hence, 𝜚 = 𝛿 and lim𝑘→∞ 𝑦𝑘+(𝑥) = log(𝛿) + log(�̄�).

(iii) Recall that 𝑚(𝑥, 𝑥′) = 𝑚((𝑠, 𝑑), (𝑟, 𝑏𝑟 (𝑑))) = 𝛽𝑠(1 − 𝑑)/(1 − 𝑟 (1 − 𝑏𝑟 (𝑑))). Since 𝑏𝑟 (𝑑)
is increasing in 𝑑 by Corollary 1, it follows that 𝑚(𝑥, 𝑥′) is decreasing in 𝑑. The price of a
one-period discount bond in state (𝑠, 𝑑) is 𝑝1(𝑠, 𝑑) = ∑

𝑟 𝜋(𝑟)𝑚((𝑠, 𝑑), (𝑟, 𝑏𝑟 (𝑑))), which is
also decreasing in 𝑑. Making the induction hypothesis that the price of a 𝑘-period discount bond
is decreasing in 𝑑, 𝑝𝑘+1(𝑠, 𝑑) = ∑

𝑟 𝜋(𝑟)𝑚((𝑠, 𝑑), (𝑟, 𝑏𝑟 (𝑑)))𝑝𝑘 (𝑟, 𝑏𝑟 (𝑑)). Since 𝑝𝑘 (𝑠, 𝑑) and
𝑚((𝑠, 𝑑), (𝑟, 𝑏𝑟 (𝑑))) are positive and decreasing in 𝑑, and 𝑏𝑟 (𝑑) is increasing in 𝑑, it follows
that 𝑝𝑘+1(𝑠, 𝑑) is decreasing 𝑑. Hence, the conditional yield 𝑦𝑘 (𝑠, 𝑑) = −(1/𝑘) log(𝑝𝑘 (𝑠, 𝑑))
is increasing in 𝑑 for each 𝑠 and 𝑘 .

(iv) From Corollary 1, the fixed points of the mappings of 𝑏𝑟 (𝑑) are 𝑑∗(𝑟) when the upper
bound constraint does not bind, and the consumption share is at the first best at these fixed
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points. Hence, 𝑚((𝑠, 𝑑∗(𝑠)), (𝑠, 𝑑∗(𝑠))) = 𝛿. By Lemma 2, the consumption share of the
old decreases with 𝑟. Hence, 𝑚((1, 𝑑∗(1)), (𝑟, 𝑏𝑟 (𝑑∗(1)))) ≥ 𝛿 with a strict inequality for
some 𝑟. Taking expectations, the bond price 𝑝1(1, 𝑑∗(1)) > 𝛿 and consequently, the yield
𝑦1(1, 𝑑∗(1)) < − log(𝛿). Since 𝑦∞ = − log(𝛿), 𝑦∞ − 𝑦1(1, 𝑑∗(1)) > 0. Likewise, it can be
checked that 𝑚((𝐼, 𝑑∗(𝐼)), (𝑟, 𝑏𝑟 (𝑑∗(𝐼)))) ≤ 𝛿 with a strict inequality for some 𝑟, which shows
that 𝑦∞ − 𝑦1(𝐼, 𝑑∗(𝐼)) < 0.

(v) By definition Υ = log(𝜓max/𝜓min) where 𝜓max and 𝜓min are the maximum and mini-
mum values of the eigenvector of the matrix 𝑄. Using (12) and (15) and assuming the non-
negativity and upper bound constraints do not bind, 𝑚𝐵 (𝑥, 𝑥′) = 𝜈(𝑥′)/𝜈(𝑥). Since 𝑚𝐴 (𝑥, 𝑥′) =
𝛿 𝑓 (𝑥)/ 𝑓 (𝑥′), the eigenvector 𝜓(𝑥) = 𝑓 (𝑥)/𝜈(𝑥). Since 𝑓 (𝑥′) = 𝛿𝜈(𝑥)/(𝛽𝜈(𝑥) + 𝛿𝜈(𝑥′)), it fol-
lows that𝜓(𝑥′) = 𝛿/(𝛽𝜈(𝑥)+𝛿𝜈(𝑥′)). The maximum value of𝜓(𝑥′) occurs when 𝜈(𝑥) = 𝜈(𝑥′) =
1, in which case 𝜓max = 𝛿/(𝛽 + 𝛿). The minimum value occurs when 𝜈(𝑥) = 𝜈(𝑥′) = 𝜈max,
in which case 𝜓min = 𝛿/((𝛽 + 𝛿)𝜈max). Hence, Υ = log(𝜓max/𝜓min) = log(𝜈max). It is easily
checked that 𝜈(𝑠, 𝑑) is increasing in 𝑑 with 𝜈(𝑠, 𝑑0(𝑠)) increasing in 𝑠, so that for (𝑠, 𝑑) ∈ 𝐸 ,
𝜈max = 𝜈(𝐼, 𝑑∗(𝐼)).

Proof of Proposition 7. With 𝑅(𝑥, 𝑥′) = 𝑟𝑏𝑟 (𝑑)/(𝑠BR(𝑑)), the expected return is �̄�(𝑥) =∑
𝑟 𝜋(𝑟)𝑟𝑏𝑟 (𝑑)/(𝑠BR(𝑑)). The risk-free rate is 𝑅 𝑓 (𝑥) = (∑𝑟 𝑞(𝑥, 𝑥′))−1 where 𝑞(𝑥, 𝑥′) =

𝜋(𝑟)𝛽𝑠(1 − 𝑑)/(1 − 𝑟 (1 − 𝑏𝑟 (𝑑)). Therefore, �̄�(𝑥)/𝑅 𝑓 (𝑥) is independent of 𝑠. Since the risk-
adjusted return on any asset is equal to the risk-free return, MRP(𝑑) = − cov(𝑚(𝑥, 𝑥′), 𝑅(𝑥, 𝑥′))
where 𝑚(𝑥, 𝑥′) = 𝑞(𝑥, 𝑥′)/𝜋(𝑟). From Corollary 1, 𝑏𝑟 (𝑑) is increasing in 𝑟 and hence, 𝑅(𝑥, 𝑥′)
is increasing with 𝑟. From Lemma 2, old consumption (1 − 𝑟 (1 − 𝑏𝑟 (𝑑))) falls with 𝑟 and
hence, 𝑚(𝑥, 𝑥′) is increasing with 𝑟. By Assumption 4, risk sharing is incomplete, and hence,
the covariance term is positive and MRP(𝑑) < 0. That is, �̄�(𝑥)/𝑅 𝑓 (𝑥) < 1. With growth
shocks, 𝑅+(𝑥, 𝑥′) = 𝑅(𝑥, 𝑥′)𝛾 and 𝑞+(𝑥, 𝑥′) = 𝜍 (𝛾)𝑞(𝑥, 𝑥′)/𝛾. Hence, �̄�+(𝑥) = �̄�(𝑥) (E𝛾𝛾),
𝑅

𝑓
+ (𝑥) = 𝑅 𝑓 (𝑥)�̄�, and

MRP+(𝑑) =
�̄�+(𝑥) − 𝑅

𝑓
+ (𝑥)

𝑅
𝑓
+ (𝑥)

=

(
�̄�(𝑥)
𝑅 𝑓 (𝑥)

− 1
)
+

(
�̄�(𝑥)
𝑅 𝑓 (𝑥)

) (
E𝛾𝛾

�̄�
− 1

)
.

Let 𝑅∗+(𝑥, 𝑥′) denote the returns with complete insurance. It is easy to check that

𝑅∗+(𝑥, 𝑥′) =

(
𝑟 − 𝛿

𝛽+𝛿

)
𝛾

𝛿

(∑
𝑟 𝜋𝑟𝑟 − 𝛿

𝛽+𝛿

) .
The corresponding expected return is �̄�∗+(𝑥) = (E𝛾𝛾)/𝛿. Likewise, the state price is 𝑞∗+(𝑥, 𝑥′) =
𝛿𝜍 (𝛾)𝜋(𝑟)/𝛾, so that the risk-free return is 𝑅 𝑓 ∗

+ = �̄�/𝛿. Hence, the corresponding multiplicative
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risk premium is MRP∗ = (E𝛾𝛾 − �̄�)/�̄�. Since the arithmetic mean is larger than the harmonic
mean, MRP∗ > 0. Substituting into the equation above gives MRP+(𝑑) = MRP(𝑑)+𝛼(𝑑)MRP∗,
where 𝛼(𝑑) = �̄�(𝑥)/𝑅 𝑓 (𝑥), as required.

Proof of Proposition 8.

(i) Since the probability of endowment state 1 is 𝜋 and debt is reset to the regeneration levels
𝑑0(𝑠) after endowment state 1 has occurred, the probability that the state (𝑠, 𝑑0(𝑠)) occurs
is 𝜙(𝑠, 𝑑0(𝑠)) = 𝜋(𝑠)𝜋, irrespective of the date or history. Therefore, 𝑇 periods after such a
resetting, the distribution function is:

𝜙𝑇 (𝑠, 𝑑 (𝑛) (𝑠)) = 𝜙(𝑠, 𝑑0(𝑠)) (1 − 𝜋)𝑛 for 𝑛 = 0, 1, 2, . . . , 𝑇 − 1,

with 𝜙𝑇 (𝑠, 𝑑 (𝑇) (𝑠)) = 𝜋(𝑠) (1 − 𝜋)𝑇 . Taking the limit as 𝑇 →∞ gives the invariant distribution
𝜙 described in the text.

(ii) By Proposition 6, Υ = log(𝜈max). The value of 𝜈max can be found from the fixed point
of the mapping 𝑏2(𝑑), which occurs at 𝑑 = 𝑑∗(2). From the first-order condition (12),
log(𝜈max) = log(𝛿/𝛽) + log((𝑠(1) (1 − 𝑏1(𝑑∗(2))))−1 − 1). Since the participation constraint is
binding when 𝑑 = 𝑑∗(2) and 𝑏2(𝑑∗(2)) = 𝑑∗(2), 𝑏1(𝑑∗(2)) can be found by solving:

log(1 − 𝑑∗(2)) + 𝛽 (𝜋 log (1 − 𝑠(1) + 𝑠(1)𝑏1(𝑑∗(2))) + (1 − 𝜋) log (1 − 𝑠(2) + 𝑠(2)𝑑∗(2))))
= 𝛽 (𝜋 log (1 − 𝑠(1)) + (1 − 𝜋) log (1 − 𝑠(2))) .

Since 𝑠(1) = 𝜅 − 𝜖 (1 − 𝜋)/𝜋 and 𝑠(2) = 𝜅 + 𝜖 , setting 𝜒 = 1 − 𝑠(1) (1 − 𝑏1(𝑑∗(2))) and using
𝑑∗(2) = 1 − 𝛿/(𝑠(2) (𝛽 + 𝛿)) gives the result in the text.
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Supplementary Appendix

This appendix presents supplementary material referenced in the paper. Part A provides
evidence on the relative income of the young and the old for six OECD countries referred to in
footnote 2 in the Introduction. Part B provides proofs of Propositions 2 and 4 from Sections 1
and 2 together with the proofs of Lemma 1 from Section 3 and Corollary 1 from Section 5.
Parts C-E relate to the two-state example of Section 8. Part C examines two alternative welfare
measures, the insurance coefficient and consumption-equivalent welfare change measure and
compares some comparative static properties. Part D considers the impact of a demographic
shock and shows how the effect of the shock is both amplified and persistent. Part E presents
the shooting algorithm used to derive the optimal allocation in the two-state example. Part F
describes the pseudo-code for the numerical algorithms used in the paper.

A Change in Relative Income of Young and Old
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Figure A.1: Relative Income of Young and Old for six OECD Countries
Note: The solid line is the average net (of taxes and transfers) equivalized disposable income for individuals aged
25-34 divided by the average of the same measure for the whole population. The dotted line is the corresponding
ratio for individuals aged 65-74.

Figure A.1 illustrates the average disposable income of individuals aged 25-34 (the young)
and the average disposable income of individuals aged 65-74 (the old) relative to the national
average over recent decades for Denmark, Germany, Italy, Spain, U.K. and U.S. (data periods
are country specific). Data is taken from the Luxembourg Income Study Database available
at www.lisdatacenter.org. In each country there has been an improvement in the average
disposable income of the old compared to the average disposable income of the young over
the sample period. For example, the average disposable income of the young in the U.S. has
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fallen from just below the national average to just above 90% of the national average during
1974-2018. Over the same period, the old have fared much better with their average disposal
income rising from approximately 70% of the national average to become roughly equal to the
national average. Moreover, the old overtook the young for the first time around the time of the
financial crisis of 2008.

A similar pattern can be seen in Italy and Spain and a narrowing of the gap between the young
and the old can also be observed in Denmark and the U.K. Germany is somewhat different with
the old overtaking the young as early as the 1980s.

B Omitted Proofs

Proof of Proposition 2. Here, we consider the case without growth shocks, so that �̄� = 1. The
lifetime endowment utility of an agent born in a state with endowment share 𝑠 is:

�̂�(𝑠) ≔ log(𝑠) + 𝛽
∑︁

𝑟
𝜋(𝑟) log(1 − 𝑟).

Consider a small transfer d𝜏(𝑠) in state 𝑠 from the young to the old. The problem of existence
of a sustainable allocation can be answered by finding a vector of positive transfer d𝜏 such
that there is a weak improvement over the lifetime endowment utility in all states and a strict
improvement in at least one state. The change in the lifetime endowment utility induced by a
vector d𝜏 is non-negative if

−𝑠−1d𝜏(𝑠) + 𝛽
∑︁

𝑟
𝜋(𝑟) (1 − 𝑟)−1d𝜏(𝑟) ≥ 0. (B.1)

Rearranging (B.1) in terms of the marginal rates of substitution �̂�(𝑠, 𝑟), we have:

−d𝜏(𝑠) +
∑︁

𝑟
𝜋(𝑟)�̂�(𝑠, 𝑟)d𝜏(𝑟) ≥ 0.

The problem of existence can then be addressed by finding a vector d𝜏 > 0 that solves:(
�̂� − 𝐼

)
d𝜏 ≥ 0, (B.2)

where 𝐼 is the identity matrix and �̂� is the matrix of 𝑞(𝑠, 𝑟) = 𝜋(𝑟)�̂�(𝑠, 𝑟). Equation (B.2)
has a well-known solution. Using the Perron-Frobenius theorem, there exists a strictly positive
solution for d𝜏, provided that the Perron root, that is, the largest eigenvalue of �̂�, is greater than
one. This is satisfied by Assumption 2, which guarantees the existence of positive transfers
from the young to the old that improve the utility of each generation.
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Proof of Proposition 4. Let 𝜔𝑐
0 = 𝜔∗ and define the critical utility 𝜔𝑐

1 by:

log(1 − exp(𝜔𝑐
1)) + 𝛽𝜔

∗ = �̂� ≔ log(𝑠) + 𝛽 log(1 − 𝑠).

Define 𝜔𝑐
𝑛 recursively by:

log(1 − exp(𝜔𝑐
𝑛))) + 𝛽𝜔𝑐

𝑛−1 = �̂� for 𝑛 = 2, 3, . . . ,∞.

From the strict concavity of the logarithmic utility function 𝜔𝑐
𝑛 > 𝜔𝑐

𝑛−1 and lim𝑛→∞ 𝜔𝑐
𝑛 =

𝜔max = log(𝑠). Let 𝑣∗ = log(1 − exp(𝜔∗)) + (𝛽/𝛿)𝜔∗. With some abuse of notation, let 𝑉𝑛 (𝜔)
denote the value function when 𝜔 ∈ (𝜔𝑐

𝑛−1, 𝜔
𝑐
𝑛]. Hence,

𝑉𝑛 (𝜔) = log(1 − exp(𝜔)) + 𝛽

𝛿
𝜔 + 𝛿𝑉𝑛−1

(
1
𝛽
(�̂� − log(1 − exp(𝜔)))

)
.

For 𝜔 ≤ 𝜔∗, 𝜔′ = 𝜔∗. Therefore, 𝑉 (𝜔) = 𝑣∗/(1 − 𝛿) for 𝜔 ∈ [𝜔min, 𝜔
∗]. For 𝜔 ∈ (𝜔∗, 𝜔𝑐

1],

𝑉1(𝜔) = log(1 − exp(𝜔)) + 𝛽

𝛿
𝜔 + 𝛿

1 − 𝛿𝑣
∗.

Differentiating the function 𝑉1(𝜔) gives:

d𝑉1(𝜔)
d𝜔

=
𝛽

𝛿
− exp(𝜔)

1 − exp(𝜔) .

Let ℎ(𝜔) ≔ exp(𝜔)/(1 − exp(𝜔)). Since 𝜔 > 𝜔∗, ℎ(𝜔) > 𝛽/𝛿 and d𝑉1(𝜔)/d𝜔 < 0. Note
that ℎ(𝜔∗) = 𝛽/𝛿 and therefore, in the limit as 𝜔 → 𝜔∗, d𝑉1(𝜔)/d𝜔 = 0. Furthermore,
the function 𝑉1(𝜔) is strictly concave because ℎ(𝜔) is increasing in 𝜔. Using this result, we
can proceed by induction and assume 𝑉𝑛−1(𝜔) is decreasing and strictly concave. Then, it is
straightforward to establish that 𝑉𝑛 (𝜔) is decreasing and strictly concave. Continuity follows
since lim𝜔→𝜔𝑐

𝑛
𝑉𝑛+1(𝜔) = 𝑉𝑛 (𝜔𝑐

𝑛). To establish differentiability, we need to demonstrate that:

lim
𝜔→𝜔𝑐

𝑛

d𝑉𝑛+1(𝜔)
d𝜔

=
d𝑉𝑛 (𝜔𝑐

𝑛)
d𝜔

.

To show this, note that for 𝜔 ∈ (𝜔𝑐
𝑛, 𝜔

𝑐
𝑛+1):

d𝑉𝑛+1(𝜔)
d𝜔

=
𝛽

𝛿
− ℎ(𝜔)

(
1 − 𝛿

𝛽

d𝑉𝑛 (𝜔′)
d𝜔

)
.
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Starting with 𝑛 = 1, we have:

lim
𝜔→𝜔𝑐

1

d𝑉2(𝜔)
d𝜔

=
𝛽

𝛿
− ℎ(𝜔𝑐

1)
(
1 − 𝛿

𝛽
lim

𝜔→𝜔𝑐
0

d𝑉1(𝜔)
d𝜔

)
.

Since lim𝜔→𝜔𝑐
0

d𝑉1(𝜔)/d𝜔 = 0, we have:

lim
𝜔→𝜔𝑐

1

d𝑉2(𝜔)
d𝜔

=
𝛽

𝛿
− ℎ(𝜔𝑐

1) =
d𝑉1(𝜔𝑐

1)
d𝜔

.

Therefore, make the recursive assumption that lim𝜔→𝜔𝑐
𝑛−1

d𝑉𝑛 (𝜔)/d𝜔 = d𝑉𝑛−1(𝜔𝑐
𝑛−1)/d𝜔. In

general, we have:

lim
𝜔→𝜔𝑐

𝑛

d𝑉𝑛+1(𝜔)
d𝜔

=
𝛽

𝛿
− ℎ(𝜔𝑐

𝑛)
(
1 − 𝛿

𝛽
lim

𝜔→𝜔𝑐
𝑛−1

d𝑉𝑛 (𝜔)
d𝜔

)
d𝑉𝑛 (𝜔𝑐

𝑛)
d𝜔

=
𝛽

𝛿
− ℎ(𝜔𝑐

𝑛)
(
1 − 𝛿

𝛽

d𝑉𝑛−1(𝜔𝑐
𝑛−1)

d𝜔

)
.

By the recursive assumption, these two equations are equal. Hence, we conclude that 𝑉 (𝜔) is
differentiable. In particular, repeated substitution gives:

d𝑉𝑛 (𝜔𝑐
𝑛)

d𝜔
=

𝛽

𝛿
−

(
𝛿

𝛽

)𝑛−1 ∏𝑛

𝑗=1
ℎ(𝜔𝑐

𝑗 ).

Since ℎ(𝜔𝑐
𝑗
) ∈ [𝛽/𝛿, 𝑠/(1 − 𝑠)), taking the limit as 𝑛 → ∞, or equivalently, 𝜔 → 𝜔max, gives

lim𝜔→𝜔max d𝑉 (𝜔)/d𝜔 = −∞. Equation (6) follows from above given that 𝜔′ = 𝜔∗ or satisfies
log(1 − exp(𝜔)) + 𝛽𝜔′ = �̂� if log(1 − exp(𝜔)) + 𝛽𝜔∗ < �̂�.

Proof of Lemma 1.

(i) Given the participation constraint of the old, 𝜔 ≥ 𝜔min(𝑠) = log(1 − 𝑠). The largest
feasible 𝜔, 𝜔max, can be found by solving the set of equations log(1 − exp(𝜔max(𝑠))) +
𝛽
∑

𝑟 𝜋(𝑟)𝜔max(𝑟) = �̂�(𝑠). There is a trivial solution where 𝜔max(𝑠) = 𝜔min(𝑠) but by Proposi-
tion 2 there is also a non-trivial solution with 𝜔max(𝑠) > 𝜔min(𝑠) for each 𝑠. Since the utility
function is concave, this non-trivial solution is unique. Let Δ𝜛 ≔

∑
𝑟 𝜋(𝑟) (𝜔max(𝑟) −𝜔min(𝑟)).

Then, 𝜔max(𝑠) can be found by solving the set of equations log(1 − exp(𝜔max(𝑠))) − log(1 −
exp(𝜔min(𝑠))) + 𝛽Δ𝜛 = 0. Since Δ𝜛 > 0 by Proposition 2, it follows that 𝜔max(𝑠) > 𝜔min(𝑠)
for all 𝑠. A reduction in 𝜔, enlarges the constraint set Φ(𝑠, 𝜔) of Problem P1 and hence,𝑉 (𝑠, 𝜔)
is non-increasing in 𝜔. To show that 𝑉 (𝑠, 𝜔) is concave in 𝜔, consider the mapping 𝑇 where

(𝑇𝐽) (𝑠, 𝜔) = max
{𝑐,(𝜔𝑟 )𝑟∈I }∈Φ(𝑠,𝜔)

𝛽

𝛿
log(1 − 𝑐) + log(𝑐) + 𝛿

∑︁
𝑟
𝜋(𝑟)𝐽 (𝑟, 𝜔𝑟).
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Consider 𝐽 = 𝑉∗, the first-best frontier. Proposition 3 established that 𝑉∗(𝑠, 𝜔) is concave
in 𝜔. It follows from the definitions of 𝑇 and 𝑉∗ that 𝑇𝑉∗(𝑠, 𝜔) ≤ 𝑉∗(𝑠, 𝜔) because 𝑉∗(𝑠, 𝜔) ≤
𝑣∗(𝑠) + 𝛿�̄�∗ and the mapping 𝑇 adds the participation constraints (11). That is, 𝑇𝑛𝑉∗(𝑠, 𝜔) ≤
𝑇𝑛−1𝑉∗(𝑠, 𝜔) for 𝑛 = 1. Now, make the induction hypothesis that 𝑇𝑛𝑉∗(𝑠, 𝜔) ≤ 𝑇𝑛−1𝑉∗(𝑠, 𝜔)
for 𝑛 ≥ 2 and apply the mapping 𝑇 to the two functions 𝑇𝑛𝑉∗(𝑠, 𝜔) and 𝑇𝑛−1𝑉∗(𝑠, 𝜔). It is
straightforward to show that𝑇𝑛+1𝑉∗(𝑠, 𝜔) ≤ 𝑇𝑛𝑉∗(𝑠, 𝜔), because the constraint set is the same in
both cases but, by the induction hypothesis, the objective is no greater in the former case. Hence,
the sequence 𝑇𝑛𝑉∗(𝑠, 𝜔) is non-increasing and converges. Let 𝑉∞(𝑠, 𝜔) ≔ lim𝑛→∞ 𝑇𝑛𝑉∗(𝑠, 𝜔)
be the pointwise limit of the mapping𝑇 . We have that𝑉∞ and𝑉 are both fixed points of𝑇 . Since
the mapping is monotonic, 𝑇𝑛 (𝑉∗) ≥ 𝑇𝑛 (𝑉) = 𝑉 . Hence,𝑉∞ ≥ 𝑉 but, since𝑉 is the maximum,
we have that 𝑉∞ = 𝑉 . Starting from 𝑉∗, the objective function in the mapping 𝑇 is concave
because 𝑉∗ and the utility function are concave. The constraint set Φ(𝑠, 𝜔) is convex. Hence,
𝑇𝑉∗(𝑠, 𝜔) is concave. By induction, 𝑇𝑛𝑉∗(𝑠, 𝜔) and the limit function 𝑉 are also concave.
Differentiability follows because the linear independence constraint qualification is satisfied on
the interior of the domain. There are 𝐼 + 1 choice variables and 2𝐼 + 3 constraints. Since
𝑉 is concave, it is differentiable if the multipliers associated with the constraints are unique.
The multipliers are unique if the linear independence constraint qualification is satisfied, that
is, if the gradients of the binding constraints are linearly independent at the solution. Since
𝜔max(𝑠) > 𝜔min(𝑠), the corresponding upper and lower bound constraints in (9) and (10) are
not both active. Not all lower bound constraints in (10) are active because this would involve
no transfers next period, which we know from Proposition 2 is not optimal. For 𝜔 < 𝜔max(𝑠),
not all upper bound constraints in (9) are active because this would imply that the participation
constraint of the young (11) does not bind, in which case some 𝜔𝑟 can be lowered below
𝜔max(𝑟) to raise the planner’s payoff. If 𝜔 > 𝜔min(𝑠), then the non-negativity constraint (8) is
not active. If 𝜔 = 𝜔min(𝑠) and (8) binds, then the young participation constraint is not active.
Hence, in either case, there are at most 𝐼 + 1 active constraints. Since the marginal utility is
strictly increasing, 𝛽 > 0, and 𝜋(𝑠) > 0 for each 𝑠, it can be checked that the matrix of active
constraints has full rank. Hence, the multipliers are unique and 𝑉 (𝑠, 𝜔) is differentiable in 𝜔

on (𝜔min(𝑠), 𝜔max(𝑠)). Since 𝑉 (𝑠, 𝜔) is concave and differentiable in 𝜔, it is also continuously
differentiable in 𝜔.

(ii) If constraint (7) binds, then the frontier is strictly downward sloping. Strict concavity of
𝑉 when 𝑉 is strictly downward sloping follows since 𝑇𝑉 is strictly concave when the frontier
is strictly downward sloping because of the strict concavity of the logarithmic utility function
and the concavity of 𝑉 . If 𝜔0(𝑠) > 𝜔∗(𝑠), then it would be possible to lower 𝜔0(𝑠), increase
consumption of the current young keeping all future promises the same without violating any
constraints and increase the planner’s utility. Assumption 4 guarantees that 𝜔0(𝑠) < 𝜔∗(𝑠) for
at least one state 𝑠. If 𝜔min(𝑠) = 𝜔∗(𝑠), then 𝜔0(𝑠) = 𝜔∗(𝑠) and hence, constraint (11) does not
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bind. Therefore, 𝜇(𝑠, 𝜔min(𝑠)) = 0. In this case, from equation (13), either 𝑉𝜔 (𝑟, 𝑔𝑟 (𝑠, 𝜔)) = 0
for 𝜔 = 𝜔min(𝑠) or one of the constraints (9) or (10) binds and 𝑔𝑟 (𝑠, 𝜔) is independent of 𝜔.
Therefore, in either case, 𝑉𝜔 (𝑠, 𝜔0(𝑠)) = (𝛽/𝛿) − (exp(𝜔min)/(1 − exp(𝜔min))) = (𝛽/𝛿) −
((1 − 𝑠)/𝑠) ≤ 0. If 𝜔min(𝑠) < 𝜔∗(𝑠), then it cannot be that 𝜔0(𝑠) = 𝜔min(𝑠) because
this implies 𝑐(𝑠, 𝜔0(𝑠)) = 𝑠, which, in turn, implies 𝜔0(𝑠) ≥ 𝜔∗(𝑠) from equation (7), a
contradiction. The multiplier 𝜆(𝑠, 𝜔) ≥ 0 and since 𝑉 (𝑠, 𝜔) is concave in 𝜔, 𝜆(𝑠, 𝜔) is
increasing in 𝜔. Let 𝜆max(𝑠) ≔ lim𝜔→𝜔max 𝜆(𝑠, 𝜔), then lim𝜔→𝜔max 𝑉𝜔 (𝑠, 𝜔) = −(𝛽/𝛿)𝜆max(𝑠),
where 𝜆max(𝑠) ∈ R+ ∪ {∞}.

(iii) Since 𝜔min(𝑠) = log(1 − 𝑠), it follows that 𝜔min(𝑠(𝑖)) < 𝜔min(𝑠(𝑖 − 1)) for 𝑖 = 2, . . . , 𝐼.
It follows from the proof of Part (i) that log(1 − exp(𝜔max(𝑠))) − log(1 − exp(𝜔min(𝑠))) is
independent of 𝑠. Therefore, 𝜔max(𝑠(𝑖 − 1)) > 𝜔max(𝑠(𝑖)). Equally, Δ𝜛 is bounded above
since the endowment share is less than one in each state. Hence, 𝜔max(𝑠) < 0, otherwise the
constraint of the young cannot be satisfied. Since 𝜔0(𝑠) = log(1 − 𝑐0(𝑠)), it follows from
Lemma 3(ii) that 𝜔0(𝑠(𝑖)) ≤ 𝜔0(𝑠(𝑖 − 1)) with strict inequality for at least one 𝑖, and hence,
𝜔0(𝐼) < 𝜔0(1).

Proof of Corollary 1.

(i) Since consumption 𝑐 = 𝑠(1 − 𝑑) for a fixed debt 𝑑, the participation constraint (11)
can be rewritten as log(1 − 𝑑) + 𝛽

∑
𝑟 𝜋(𝑟) (𝜔𝑟 − log(1 − 𝑟)) ≥ 0. Hence, the multiplier on

this constraint depends only on 𝑑. If the constraint does not bind, then 𝑔𝑟 (𝑠, 𝜔) = 𝜔0(𝑟)
from Lemma 2 and consequently, 𝑏𝑟 (𝑑) = 𝑑 (𝑟, 𝜔0(𝑟)) = 𝑑0(𝑟). There is a critical value
of debt, 𝑑𝑐, below which the constraint does not bind. Since 𝑏𝑟 (𝑑) = 𝑑0(𝑟) for 𝑑 ≤ 𝑑𝑐, it
follows that 𝑑𝑐 = 1 − exp(−𝛽∑

𝑟 𝜋(𝑟) (log(1 − 𝑟 + 𝑟𝑑0(𝑟)) − log(1 − 𝑟))) ∈ (𝑑min, 𝑑max). By
Assumption 3, 𝑑0(1) = 0 and hence, 𝑑min = 0. Since 𝑑max is the largest non-trivial solution of
log(1 − 𝑑max) + 𝛽

∑
𝑟 𝜋(𝑟) (log(1 − 𝑟 + 𝑟𝑑max) − log(1 − 𝑟)) = 0, it follows that 𝑑max < 1. Let

ℎ̃𝑠 (𝑑) ≔ −(𝛿/𝛽)𝑉𝜔 (𝑠, log(1 − 𝑠 + 𝑠𝑑)). Then, for 𝑑 ∈ [𝑑𝑐, 𝑑max), 𝑏𝑟 (𝑑) = ℎ̃−1
𝑟 (𝜇(𝑑)). Since

𝜇(𝑑) is strictly increasing in 𝑑 and ℎ̃−1
𝑟 (𝜇) is strictly increasing in 𝜇, it follows that 𝑏𝑟 (𝑑) is

strictly increasing in 𝑑 for 𝑑 > 𝑑𝑐.

(ii) Consider the value function

�̂� (𝑠, 𝑑) = max
(𝑏𝑟 )𝑟∈I

(𝛽/𝛿) log(1 − 𝑠 + 𝑠𝑑) + log(𝑠(1 − 𝑑)) + 𝛿
∑︁

𝑟
𝜋(𝑟)�̂� (𝑟, 𝑏𝑟)

subject to the constraint

log(1 − 𝑑) + 𝛽
∑︁

𝑟
𝜋(𝑟) (log(1 − 𝑟 + 𝑟𝑏𝑟) − log(1 − 𝑟)) ≥ 0.
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It follows from this maximization that �̂�𝑑 (𝑠′, 𝑑) > �̂�𝑑 (𝑠, 𝑑) for 𝑠′ > 𝑠. We want to show
𝑏𝑟 ′ (𝑑) ≥ 𝑏𝑟 (𝑑) for 𝑟′ > 𝑟. Suppose to the contrary that 𝑏𝑟 ′ (𝑑) < 𝑏𝑟 (𝑑). It follows from the first-
order condition that �̂�𝑑 (𝑟′, 𝑏𝑟 ′ (𝑑)) ≤ �̂�𝑑 (𝑟, 𝑏𝑟 (𝑑)) with equality only if the multiplier 𝜇(𝑑) is not
binding. But since �̂�𝑑 (𝑟, 𝑏𝑟 ′ (𝑑)) < �̂�𝑑 (𝑟′, 𝑏𝑟 ′ (𝑑)) it follows that �̂�𝑑 (𝑟, 𝑏𝑟 ′ (𝑑)) < �̂�𝑑 (𝑟, 𝑏𝑟 (𝑑)),
which from the concavity of �̂� (𝑟, 𝑑) in 𝑑, implies 𝑏𝑟 ′ (𝑑) > 𝑏𝑟 (𝑑), a contradiction.

(iii) Lemma 2(iv) and Assumption 4 guarantee that 𝑑 𝑓 (𝑟 (𝐼)) > 𝑑𝑐.

C Risk Measures and Comparative Statics

In this Appendix, we continue the two-state example of Section 8 and examine how the bound
on the residual risk Υ and alternative measures of risk sharing respond to comparative statics
changes of endowment parameters and discount factors. For all comparative statics, we change
the value of the parameter of interest holding all other parameters at the values given in
Example 1.41

The top row of Figure C.1 plots the bound Υ against 𝜅, 𝜖 and 𝛿, holding 𝛽 = 𝛿 for relevant
values of the parameters. A larger 𝜅 corresponds to a larger average endowment share to the
young, while a smaller 𝜖 corresponds to reduced uncertainty. Increasing 𝜅, or reducing 𝜖 , raises
risk sharing as measured by a reduction in Υ. For 𝜅 above a critical value, or 𝜖 below a critical
value, the first best is sustainable at the invariant distribution, in which case Υ = 0.42 The
effect of changes in the discount factor on Υ is non-monotonic when we consider sufficiently
low values of 𝛿 for which Assumption 5 does not hold. For high values of the discount factor,
the invariant distribution has geometric probabilities as described in Part (i) of Proposition 8.
As the discount factor falls, either the current transfer is reduced, or the newly state-contingent
bonds increased, to satisfy the participation constraint of the young in state 2. This change
reduces 𝑑max. However, since the change also raises 𝑑∗(2), it effectively enlarges the ergodic
set, resulting in an increase of risk, as reflected in the rise of Υ. As the discount factor is
reduced further, the upper bound constraint on debt becomes binding and it is no longer true
that resetting to the regeneration debt levels takes place any time state 1 occurs. Reversion to
𝑑0(𝑟) occurs less frequently and the invariant distribution has now a positive probability mass
at 𝑑max. The range 𝑑max − 𝑑min decreases, implying that the bound Υ falls.

As alternative measures of risk sharing, we consider the insurance coefficient and the con-
sumption equivalent welfare change, conditional on state 𝑥 = (𝑠, 𝑑). The insurance coefficient

41 In all cases, the invariant distribution is geometric, except when discount factors are changed. When the
invariant distribution is not geometric, we can no longer rely on the shooting algorithm used in Section 8. In this
case, we implement an algorithm based on a value function iteration method (see, Part F of the Supplementary
Appendix for a description).

42 The critical values are 𝜅 ≈ 0.6565 and 𝜎 ≈ 0.0243.
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Figure C.1: Comparative Statics on the BoundΥ, the Insurance Coefficient and the Consumption
Equivalent Welfare Change
Note: The top row illustrates the bound Υ. The middle row illustrates the average insurance coefficient E𝜙 [𝜄(𝑥)].
The bottom row illustrates the average consumption equivalent welfare change E𝜙 [𝜃 (𝜔)].

𝜄(𝑥) is the fraction of the variance of the endowment shock that does not translate into a
corresponding change in consumption. With i.i.d. shocks, the insurance coefficient is:

𝜄(𝑥) = 1 − cov (log (𝑐(𝑟, 𝑏𝑟 (𝑑))) , log (𝑟))
var (log (𝑟)) .

where 𝑟 is the endowment shock next period. At the first best, and provided that the boundary
constraints on debt do not bind, the consumption share of the young is independent of the state
𝑥 and the insurance coefficient is one. The expected value of the one minus the insurance
coefficient, evaluated at the invariant distribution, is plotted in the middle row of Figure C.1
against 𝜅, 𝜖 and 𝛿. This measure is smaller when more risk is shared. The consumption
equivalent welfare change relative to the first best for a given 𝜔 :=

∑
𝑠 𝜋(𝑠)𝜔𝑠 is measured by
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solving the following equation in terms of 𝜃:

1
1 − 𝛿

(
E[𝑢(𝑐∗(1 − 𝜃))] + 𝛽

𝛿
E[𝑢((1 − 𝑐∗) (1 − 𝜃))]

)
= �̄� (𝜔),

where �̄� (𝜔) = ∑
𝑠 𝜋(𝑠)𝑉 (𝑠, 𝜔𝑠). The solution 𝜃 (𝜔) measures the proportion by which the first-

best consumption needs to be reduced to match the optimal solution for each 𝜔. The expected
value of 𝜃 (𝜔), evaluated at the invariant distribution, is plotted in the bottom row of Figure C.1
against 𝜅, 𝜖 and 𝛿. The consumption equivalent welfare change is smaller when more risk is
shared. The long-run welfare loss measure is the average of 𝜃 (𝜔) at the invariant distribution
of 𝜔. The comparative statics on the bound Υ are similar to those of the insurance coefficient
and the consumption equivalent welfare. The amount of risk shared at the optimal solution
increases with 𝜅 and 𝛿 (provided that the upper bound on debt does not bind) but falls with 𝜖 .

D Demographic Shock

In this appendix, we illustrate how the economy responds to the arrival of unexpected demo-
graphic shock. Consider a one-off increase in fertility at date 𝑇 + 1. That is, suppose the cohort
size is 𝑁𝑡 = 1 for 𝑡 ≤ 𝑇 and 𝑁𝑡 = 1 + 𝜀 for 𝑡 > 𝑇 . The ratio of young to old is 𝑁𝑡/𝑁𝑡−1, which
equals 1 + 𝜀 for 𝑡 = 𝑇 + 1 and equals one otherwise. Moreover, suppose that the endowment
is proportional to the population size, so that the total endowment is 𝑒

𝑦
𝑡 𝑁𝑡 + 𝑒𝑜𝑡 𝑁𝑡−1, and that

the planner’s weights placed on the utility of the young and the old are adjusted by the group
sizes. Figure D.1 shows the impulse response function to a demographic shock of 𝜀 = 0.05
for the parameters of Example 1. The initial increase in the birth rate implies a larger weight
on the young and a larger amount of total endowment to be shared at date 𝑇 + 1. Under full
enforcement (light gray line), the consumption share of the young rises because more weight is
placed on their consumption. However, the effect lasts only for one period and the consumption
share reverts to its long-run value in the next period. With limited enforcement, the effect is
amplified and persists for several periods. This is because a positive fertility shock relaxes the
current participation constraint, leading to both increased consumption for the current young
and reduced future promises. As a result, it also loosens participation constraints in the future,
thereby prolonging the impact of the temporary demographic shock across several periods.

This positive demographic shock is equivalent to an exogenous unexpected decrease in
the fiscal burden on the young and therefore, it is similar to the effects caused by shocks to
expenditures or, in an economy with prices, by inflationary shocks, which erode the value of
debt.
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Figure D.1: Impulse Response Functions for a Demographic Shock.
Note: The figure plots the average consumption shares of the young in response to a demographic shock both for
the limited enforcement (dark gray) and full enforcement case (light gray). The average is computed starting from
the invariant distribution and recomputing the average for all possible sample paths.

E Shooting Algorithm

In the two-state economy in Section 8, under Assumption 5, the optimal consumption depends
only on the number of previous state 2s. Let 𝑐(𝑛) (𝑠) denote the consumption after 𝑛 consecutive
state 2s and let 𝜇(𝑛) denote the corresponding multiplier on the state 2 participation constraint.
It follows from the first-order condition (12) and the updating rule (15) that

𝑐(𝑛) (1) = 𝛿

𝛽𝜈(𝑛−1) + 𝛿
and 𝑐(𝑛) (2) = 𝛿𝜈(𝑛)

𝛽𝜈(𝑛−1) + 𝛿𝜈(𝑛)
for 𝑛 = 0, 1, 2 . . . ,∞,

where 𝜈(𝑛) = 1 + 𝜇(𝑛) and 𝜈(−1) = 1. Let 𝜈(∞) = lim𝑛→∞ 𝜈(𝑛) . The participation constraint of
the young binds in state 2. Hence,

log
(

𝛿𝜈 (𝑛)

𝛽𝜈 (𝑛−1)+𝛿𝜈 (𝑛)

)
+ 𝛽

(
𝜋 log

(
𝛽𝜈 (𝑛)

𝛽𝜈 (𝑛)+𝛿

)
+ (1 − 𝜋) log

(
𝛽𝜈 (𝑛)

𝛽𝜈 (𝑛)+𝛿𝜈 (𝑛+1)

))
= 𝜐(2). (E.1)

Since equation (E.1) holds in the limit

log
(

𝛿
𝛽+𝛿

)
+ 𝛽

(
𝜋 log

(
𝛽𝜈 (∞)

𝛽𝜈 (∞)+𝛿

)
+ (1 − 𝜋) log

(
𝛽

𝛽+𝛿

))
= 𝜐(2). (E.2)
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Since 𝜐(2) = log(𝑠(2)) + 𝛽𝜋 log(1− 𝑠(1)) + (1− 𝜋) log(1− 𝑠(2))), equation (E.2) can be solved
to give:

𝜈(∞) =
𝛿

𝛽

©«−1+
((

𝛿
𝛽

) 1−𝜋
𝜋

(
𝛽+𝛿
𝛿

) 1+𝛽(1−𝜋)
𝛽𝜋 (𝑠(2))

1
𝛽𝜋 (1 − 𝑠(2))

1−𝜋
𝜋 (1 − 𝑠(1))

)−1ª®¬
−1

. (E.3)

Using equations (E.1) and (E.2), gives a second-order difference equation for 𝜈(𝑛):

𝜈(𝑛+1) = 𝛽

𝛿
𝜈(𝑛)

(
−1+

(
𝛽𝜈 (𝑛)

𝛽𝜈 (𝑛)+𝛿

) 𝜋
1−𝜋

(
𝛽𝜈 (∞)+𝛿
𝛽𝜈 (∞)

) 𝜋
1−𝜋

(
𝛽+𝛿
𝛿

) 1
𝛽(1−𝜋)

(
𝛽+𝛿
𝛽

) (
1+ 𝛽

𝛿
𝜈 (𝑛−1)

𝜈 (𝑛)

)− 1
𝛽(1−𝜋)

)
. (E.4)

It can be shown that the second-order difference equation in (E.4) has a unique saddle path
solution. Since 𝜈(−1) = 1, the solution can be found by a forward shooting algorithm to search
for 𝜈(0) such that the absolute difference between 𝜈(∞) (given in (E.3)) and 𝜈(𝑁+1) (given in (E.4))
is sufficiently close to zero for 𝑁 sufficiently large.

F Pseudo-code for Numerical Algorithms

Algorithms are implemented in MATLAB®. At each iteration, the optimization uses the non-
linear programming solver command fsolve in Algorithm 1 and command fmincon in Algo-
rithm 2. Value function interpolation uses the spline method of the interp1 command. In a
typical example, the value function converges within 15 iterations.

Algorithm 1: Shooting Algorithm
procedure ⊲ Find 𝜈(0) = 1 + 𝜇(0) in two state economy (Section 8)

target← 𝜈(∞) ⊲ Use equation (E.3) in Appendix E
tolerance← 𝜖 > 0 ⊲ 𝜖 = 10−10

repeat
initialization← 𝜈

(0)
0 > 0

Compute 𝜈
(𝑁)
0 for 𝑁 = 20 ⊲ Use equation (E.4) in Appendix E

𝑑 ← 𝑑 (𝜈(𝑁)0 , 𝜈(∞)) ⊲ 𝑑 (𝜈(𝑁)0 , 𝜈(∞)) = |𝜈(𝑁)0 − 𝜈(∞) |
until 𝑑 < 𝜖

𝜈(0) ← 𝜈
(0)
0

end procedure
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Algorithm 2: Find Value and Policy Functions
procedure ⊲ Find solution to functional equation (P1)

Ω← [𝜔min, 𝜔max] ⊲ 𝜔min and 𝜔max computed
gridpoints← 𝑔𝑝 ⊲ Discretize Ω: 𝑔𝑝 = 200 Chebyshev interpolation points
tolerance← 𝜖 > 0 ⊲ 𝜖 = 10−6

𝐽 ← 𝑉∗ ⊲ 𝑉∗ is first best
repeat

Compute 𝑇𝐽 from 𝐽 ⊲ Use equation (P1) and interpolate
𝑑 ← 𝑑 (𝑇𝐽, 𝐽) ⊲ 𝑑 (𝑇𝐽, 𝐽) = max𝜔 |𝑇𝐽 (𝜔) − 𝐽 (𝜔) |
𝐽 ← 𝑇𝐽

until 𝑑 < 𝜖

𝑉 ← 𝐽

Compute 𝑔𝑟 (𝑠, 𝜔) and 𝑓 (𝑠, 𝜔) ⊲ Using the function 𝑉 just computed.
end procedure

Algorithm 3: Computing the Invariant Distribution
procedure ⊲ Find invariant distribution for 𝑥 = (𝑠, 𝜔) ∈ 𝑋 ⊂ R𝑛𝐼×1

initialization← 𝑎0 = e(1/𝑛𝐼) ⊲ e = (1, 1, ..., 1) ∈ R𝑛𝐼×1

Compute 𝑎 = Π𝑎0 ⊲ Use the transition probability Π ⊂ R𝑛𝐼×𝑛𝐼

tolerance← 𝜖 > 0 ⊲ 𝜖 = 10−8

repeat
Compute 𝑎 = Π𝑎 ⊲ 𝑎 is eigenvector associated with 1
𝑑 ← 𝑑 (Π𝑎, 𝑎) ⊲ 𝑑 (Π𝑎, 𝑎) = max𝑥 |Π𝑎(𝑥) − 𝑎(𝑥) |
𝑎 ← Π𝑎

until 𝑑 < 𝜖

𝜙← 𝑎/∑𝑥 𝑎(𝑥) ⊲ 𝜙 is normalized invariant distribution
end procedure
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