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DYNAMIC RELATIONAL CONTRACTS

1. INTRODUCTION

It is often difficult to enforce contracts. This may be because the terms of the contracts are dif-
ficult to specify precisely or because they are difficult to specify in a way verifiable to a court. It
may be that there is no legal authority to enforce a contract. When relationships are repeated it
is possible to include an element of self-enforcement in the contract by designing terms so that
any short-term incentive to renege is offset by a long-term benefit to adhering to the contract.
Non-stationary contracts can do better in this regard as the future benefits from the contract can
be tailored to the current situation, favoring the agent who has most temptation to renege in the
current period.

We consider such a self-enforcing or relational contract in the case where two risk-neutral
agents make repeated costly relation-specific investments or actions ai that produce a stochastic
joint output y(a1, a2, s) to be shared at each date, where s denotes the current state of nature. We
shall further assume that both agents have consumption constraints so that the consumption of
the agents is bounded below. Contracts cannot be enforced and in the event of disagreement
agent i receives a gross breakdown payoff of φi (a1, a2, s).1 We shall assume that these invest-
ments or actions are complementary, and that the breakdown payoff of agent i is increasing in
the investment of agent j . In this case if agent 1’s investment is increased more must be offered to
agent 2 to prevent him reneging. Thus although the joint surplus may be increased, agent 1 may
have no incentive to increase her investment or action as there may be no division of the surplus
which simultaneously prevents agent 2 from reneging and compensates agent 1 for the increased
investment. Thus agents will face a hold-up problem and investment may be inefficiently low.

The question we address is how the investments or actions of the agents and the division of
the joint output can be structured over time to prevent agents from deviating and to ameliorate
the efficiency loss caused by the hold-up problem. That is we shall be interested in finding and
characterizing the set of Pareto-efficient self-enforcing contracts.

We establish three main results. Firstly we derive a backloading result (Theorem 3). In gen-
eral it is well known that an important property of optimum self-enforcing contracts is the back-
loading principle (for a general argument see Ray 2002). If we consider a case where agents are
risk-neutral and one agent is able to commit to the contract, then the backloading principle says
that transfers to the agent who cannot commit should be backloaded into the future. The in-
tuition is the following. Suppose that of the two agents, agent 1 can commit to the contract but
agent 2 cannot. Further suppose that agent 2 is getting a relatively low discounted utility from the
contract. This may impose an efficiency cost on the contract as the investment of agent 1 needs
to be kept low to limit the gains to agent 2 from expropriation. Since both agents are risk-neutral
they are concerned only with the discounted value of utility (transfers net of action costs) and
not the actual timing of utility received. Thus the best way to discourage agent 2 from reneging is
to backload transfers to agent 2 whilst keeping the discounted sum of transfers unchanged. This
provides a carrot in the future which would be forgone if agent 2 reneged. Such a change doesn’t
worsen current incentives but improves future incentives by increasing agent 2’s continuation
utilities and hence allowing future increases in agent 1’s investment. In our context where nei-
ther agent can commit, the operation of this principle is less clear. For example, agent 1 herself
may be constrained later, so this backloading could worsen future incentives. We show however,
that this principle remains partially valid and that we have backloading of consumption for the
agents whose self-enforcing constraints are most difficult to meet.

1The breakdown payoffs are assumed to be feasible, φ1(a1, a2, s)+φ2(a1, a2, s) ≤ y(a1, a2, s). The exact details of the
model will be specified in Section 2.
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Furthermore it is shown that as the backloading principle applies to utilities and not simply
consumption it might be optimal to increase investment beyond the efficient level. This allows
more output to be allocated to the other agent and thus more backloading. Of course there is
an efficiency loss in overinvesting so it will always be desirable to backload transfers as much as
possible before backloading utility by altering actions. The result however, has the implication
that an optimum self-enforcing contract may involve overinvestment in the initial periods by one
of the agents despite the hold-up problem suggesting that there will be underinvestment. Never-
theless we shall show that it will never be the case that both agents overinvest in any equilibrium.
Equally we are able to show that in the case where only one agent takes an action (as in much of
the existing literature) there is never overinvestment.

Secondly, we establish that the contract converges to a stationary phase in finite time with
probability one (Theorem 5). It is shown that this stationary phase corresponds to the self-
enforcing contract which maximizes current net surplus. Although it is perhaps not so surprising
that should we ever reach a stationary state the contract will maximize the current joint surplus
amongst all feasible self-enforcing contracts, convergence itself is more surprising. In particu-
lar we show that convergence holds even when the default payoffs and production technologies
fluctuate through time or when the action choices are made sequentially at alternative periods
rather than simultaneously. Furthermore we show that in the stationary phase for a given state
either both agents are investing efficiently (which happens if this is feasible given the constraints)
or both are underinvesting. Likewise, unless the first best is attainable, in this stationary state we
show that both agents are simultaneously constrained in the sense that they are both at the point
of reneging on the contract and taking their default payoffs.

Thirdly we show that if the optimum contract is non-trivial with positive investment by both
agents at each date then it will exhibit a two-phase property (Theorem 6). In the first phase there
is backloading with zero consumption and overinvestment by one of the agents. This first phase
may not exist although we shall present an example where it does. In the second phase (which
occurs with probability one) there will be no overinvestment. In this second phase, there can
be first a one-period transition in which one of the agents is investing efficiently and thereafter
either both actions are efficient or both actions are inefficient and both agents are indifferent
to reneging on the contract. The subsequent part of this phase is stationary and joint utility
maximizing.

To outline our results suppose that the initial distribution of utility is such that only one of
the agents, say agent 2 is initially underinvesting. This situation occurs if agent 1’s utility from the
arrangement is sufficiently low that more investment by agent 2, which increases what agent 1
would get by defaulting, would lead her to renege, while agent 2 receives sufficient such that he
will not want to renege even if agent 1 invests efficiently. In this situation agent 2 is not con-
strained, that is, strictly prefers to abide by the terms of the contract. Eventually, utilities will
move in favor of agent 1 until both are constrained (or neither are) and a stationary equilibrium
is reached where period-by-period surplus is maximized given the self-enforcing constraints.
Moreover, if this initial phase exists with only one agent constrained, that agent will receive sub-
sistence consumption (zero in our model), and if investing at all, will overinvest—that is to say,
agent 1’s utility is backloaded. We emphasize that the backloading phase can only ever occur
(at most) once. Thus, even though the split of the breakdown payoff between the parties may
(exogenously) move in favor of agent 2, thus relaxing the self-enforcing constraint of agent 1 and
potentially leading to agent 2 to have a binding constraint, there cannot arise a situation in an
efficient contract in which agent 2’s utility is backloaded (i.e. so that only agent 1 is underinvest-
ing).
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The model we present here generalizes or is related to a number of models of dynamic re-
peated bilateral relationships in the literature, although we extend existing models to allow for
both parties to take actions. The models of Thomas and Worrall (1994) on foreign direct invest-
ment, Sigouin (2003) on international financial flows and Albuquerque and Hopenhayn (2004)
on credit constrained firm growth might all be considered as special cases where only one party
to the contract undertakes an action. Although more general in allowing for multidimensional
actions, the model of Ray (2002) also has investment by only one agent.2 The model we present
is general as our structure allows for actions to be taken, for example, alternately by each agent
and allows for limited commitment by both sides, with stochastic output and stochastic default
payoffs.3

Although this paper significantly extends existing results it does so by adopting a different
approach. The literature just cited uses a dynamic programming approach to characterize opti-
mum self-enforcing contracts. In our context the dynamic programming approach has the dis-
advantage that the resulting problem may be non-convex and, even when it is convex, it is known
(see e.g. Thomas and Worrall 1994) that the value function may not be differentiable. Thus the
use of first-order conditions is typically problematical.4 We avoid these issues by deriving results
from variational methods and our main results will not require that set of constrained efficient
contracts be convex.5 This allows us to derive our results in more generality than in some of the
existing literature.

Our model is also related to two other literatures. First there is a literature on risk-sharing
and two-sided limited commitment and no actions (see e.g. Kocherlakota 1996, Ligon et al. 2002,
Thomas and Worrall 1988). This literature shows that the optimum risk-sharing contract exhibits
two important properties. First transfers depend both on the current income shocks and the
past history of income shocks. Secondly the contract evolves toward a stationary but typically
non-degenerate distribution of future expected utilities. However, the distribution of utilities,
or the distribution of the implied Pareto-weights, may not converge.6 This is in contrast to the
results of the current paper. Moreover, in the current case if efficiency cannot be sustained in
the stationary phase then both agents are constrained and this feature again makes the model
qualitatively distinct from the risk-sharing models with no actions where in any non-degenerate
contract only (at most) one agent’s constraint will bind at a time.

A second related literature which takes a slightly different approach is that of Levin (2003)
and others which builds upon the work of Macleod and Malcomson (1989). In that work out-
put accrues to individual agents with subsequent non-contractual transfers being made. This is
captured in our model by interpreting φi (a1, a2, s) as the individual outputs and assuming that
breakdown payoffs exhaust output. The model of Levin (2003) has recently been generalized by

2In Ray (2002) the agent not taking the action, the principal, is able to commit to the contract.
3In a multilateral model, Board (2007) considers the case of multiple agents where the principal—the party taking the

action that is subject to hold-up—can trade with only one agent in a period. He shows that potential agents are divided
into insiders who are treated efficiently, and outsiders, against whom the principal is biased.

4If both agents are investing, the value function will be differentiable if it is concave. If only one agent is investing the
value function will not be differentiable in general even if it is concave. These points of non-differentiability can also be
an important part of the solution so that even with concavity a sub-differential analysis must be used. This is in contrast
to the dynamic moral hazard problem analyzed by Pavoni (2004) who is able use a first-order approach despite points of
non-differentiability by showing that such points are almost never reached at the optimum.

5Although it would be possible to convexify the problem by allowing for random contracts, we prefer to concentrate
on pure strategy equilibria, partly because our results show that even in this case strong convergence results can be
established.

6The two-sided lack of commitment is crucial to this result. If there is only one-sided lack of commitment the distri-
bution of utilities will also converge to a degenerate distribution.

3



JONATHAN P. THOMAS AND TIM WORRALL

Rayo (2007) who considers the multiple agent case and by Doornik (2006) who allows for two-
sided moral hazard. There are two key differences between these works and our paper. Firstly,
these recent papers assume that effort is unobserved so that there is an asymmetry of informa-
tion whereas we assume observability (but non-verifiability) of actions. Secondly, they do not
assume that agents have lower bounds on consumption/cannot borrow as we do, and because of
this it can be shown that stationary contracts are optimum (at least after an initial period). This
is in contrast to the current paper where we show how actions and transfers are structured along
the path to a stationary state.

Perhaps closest in terms of the model of our paper is the work of Garvey (1995) and Halo-
nen (2002). However, they consider the minimum discount factor that will allow the efficient
investments to be sustained under different assumptions about the breakdown payoffs where
the breakdown payoffs themselves may depend on whether there is joint or single ownership of
production. Thus they do not consider the inefficiency in investments or the temporal structure
of investment which of central importance here. Moreover these models do not explicitly allow
for uncertainty.

The paper proceeds as follows. The next section describes the model and optimum self-
enforcing contracts. Section 3 provides the main results of the paper. Section 4 considers the
important special case where only one agent contributes to production. Section 5 concludes.

2. MODEL

We consider a dynamic model of joint production where agents repeatedly undertake some
action or investment that generates a joint output. Once produced agents have the opportunity
to unilaterally expropriate some of the joint output for their own benefit. Agents have consump-
tion constraints in the sense that their consumption cannot be reduced below some lower bound.
In this section we shall describe the economic environment, the joint production and action sets,
the part of joint output that can be expropriated and the set of self-enforcing contracts. In addi-
tion we shall define a game played by the two agents and identify self-enforcing contracts with
the subgame perfect equilibria of that game. Our interest will be in optimal self-enforcing con-
tracts or equivalently the Pareto-efficient subgame perfect equilibria.

2.1. Economic environment

Time is discrete and indexed by t = 0,1,2, . . . ,∞. The environment is uncertain and at the
start of each date a state of nature s is realized from a finite state space S = {s1, s2, . . . , sn}. The
state evolves according to a time homogeneous Markov process with transition matrix [πsr ] with∑

r∈S πsr = 1, and we assume some initial state s0 has probability one. We shall assume that the
Markov chain is irreducible so that every state communicates with every other.7 It is important
to emphasize that this is a very general structure and encompasses the case with no uncertainty
where n = 1 and the possibility that some πr s = 0. We shall denote the state at date t by st and
the history of states will be denoted s t = {s0, s1, s2, . . . , st }.8

7A number of these assumptions are inessential and made for convenience and simplicity. The important property is
that the stochastic process is Markovian. Finiteness of the state space is also not essential and most of the results would
go through if the state space were continuous. Equally we could we specify a distribution over the set of initial states
rather than assuming there is some initial state s0. For many results it is possible to assume that there is some finite time
horizon T although we shall be interested in convergence properties of optimum contracts and these results will require
an infinite time horizon.

8Where we write st we shall assume this is a positive probability event unless otherwise stated, as zero probability
events play no role here.
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DYNAMIC RELATIONAL CONTRACTS

There are two agents, i = 1,2, and at each date both agents choose an action or investment
ai from ℜ+ (we shall use the notation ℜ+ to denote the non-negative orthants of the real num-
bers and ℜ++ to denote its interior). States are perfectly observed and actions are taken simul-
taneously and after the state is realized. Actions lead to an output y(a1, a2, st ) that may depend
upon the current state. Output and actions are observed by both agents. We make the following
assumption about the production function.

ASSUMPTION 1: The function y(·, ·, st ) : ℜ2+ →ℜ+ satisfies the following conditions:(i) Out-

put at zero: y(0,0; ·) = 0; (ii) Continuity: it is continuous in a on ℜ2+; (iii) Differentiability: it is

twice continuously differentiable in a on ℜ2++; (iv) Monotonicity: it is either constant in ai on

ℜ+ or strictly increasing in ai on ℜ+ for each i = 1,2 and is strictly increasing for at least one

i = 1,2 and some st ∈ S ; (v) Diminishing marginal product: ∂2 y/∂a2
i < 0 whenever ∂y/∂ai >

0; (vi) Boundedness: limα→∞ y(αa1,αa2, st )/α < a1 + a2 for all a ∈ ℜ2+; (vii) Complementarity:

∂2 y/∂a1∂a2 ≥ 0 for all a ∈ℜ2+.

With the exception of complementarity these are standard assumptions on the production
function. The assumption of strategic complements is made as we want to analyze situations
where there is mutual benefit from cooperation so that increasing the action of one agent in-
creases the marginal benefit of the other’s action. It is important to realize that our assumptions
will enable us to consider the case where only one action matters for production. In this case
although we allow both agents to choose an action this will be the same in an efficient equilib-
rium as imposing the restriction that the action is zero. We impose Assumption 1(vi) so that in
conjunction with the other conditions the set of action choices that yield non-negative surplus,
Ã(st ) = {(a1, a2) ∈ R2+ | y(a1, a2, st ) ≥ a1 +a2} is compact.9 Since all assumptions apply state-wise
we shall often be able to drop the notational dependence on the state where this is convenient.

REMARK: The production technology and stochastic structure is extremely general. Thus we may

have some states where only agent 1 takes an action and in other states only agent 2 takes an

action. Although in the model actions are chosen simultaneously by agents each period, this

allows us to cover the case say, where one agent takes an action in even periods and the other

agent takes an action in odd periods. To examine that situation we could use a two state transition

matrix

Π=
(

0,1

1,0

)
where there are two states but they alternate between even and odd periods. Similarly we may

have a situation where in some states neither agent takes an action and output is zero. All these

cases can be handled by the above specification.

Since actions are chosen simultaneously and independently we define the conditionally ef-
ficient actions a∗

i (a j , st ) such that

a∗
i (a j , st ) ∈ argmax

ai∈ℜ+
[y(a1, a2, st )−ai ].

We then have the following standard result.10

LEMMA 1: Given Assumption 1 the conditionally efficient actions are single-valued, continu-

ous, non-decreasing functions of the other agent’s action.

9A further implicit assumption about the concavity of the function will be made below.
10All proofs are given in the Appendix.
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We define an efficient action pair a∗(st ) = (a∗
1 (st ), a∗

2 (st )) to be

a∗(st ) ∈ argmax
a∈ℜ2+

[y(a1, a2, st )−a1 −a2].

The efficient action pair will correspond to a point where a∗
i (st ) = a∗

i (a∗
j (st ), st ) for i 6= j = 1,2.

We shall assume that the efficient action pair is unique.11

ASSUMPTION 2: The efficient action pair a∗(st ) is unique for each st .

Although the efficient action pair is assumed to be unique, it need not be non-negative. As
we have not imposed a profitability condition that there exists a vector a such that y(a1, a2, st ) >
a1 +a2 it may be that a∗(st ) = (0,0) in some state or indeed in all states.12

The joint output will be divided up between the two agents in a way which is described in
the next sub-section. For the moment we shall simply think of a consumption and action plan
for each agent that depends on the history s t . Denote the consumption of agent i at history
s t by ci (s t ) and the action by ai (s t ). Critically, we shall assume that agents have consumption
constraints so that consumption must be non-negative. There is no storage, and therefore the
feasible set of consumptions at time t in state s is

C (a, st ) = {(c1(s t ),c2(s t )) ∈ℜ2
+ :

2∑
i=1

ci (s t ) ≤ y(a1(s t ), a2(s t ), st )}.

Agents have preferences over consumption and action streams. We assume that agents have time
separable utility functions, are risk neutral and that action costs are linear:13 agent i ’s utility at t
is given by

wi (s t ) = ci (s t )−ai (s t ).

We assume that both agents discount the future by a common factor δ ∈ (0,1) and that agents are
interested in maximizing expected discounted utility

E

[ ∞∑
t=0

δt wi (s t ) | s0

]
.

For a given pair of actions the current net surplus generated at history s t is

y(a1(s t ), a2(s t ), st )− (a1(s t )+a2(s t ))

11It would be possible to derive this assumption by instead assuming that the function y(a1, a2, ·) is strictly concave if it
is increasing in both its arguments. However, we do not require this strict concavity elsewhere, so it is simpler to directly
assume that the efficient action pair is unique.

12Our results will apply (trivially) in this case.
13As is fairly standard this linearity assumption is made for convenience and the analysis will carry through if actions

costs are convex. Thus suppose wi = ci −gi (ai ) where gi is strictly increasing and convex and g (0) = 0. Letting hi denote
the inverse of gi we have ai = hi (gi ) where hi is strictly increasing and concave. Hence agents can be viewed as choosing
gi and the reduced-form production function is f (g1, g2, st ) = y(h1(g1),h2(g2), st ) which will satisfy Assumption 1 with
gi replacing ai and f replacing y . In this case the net surplus is f (g1, g2, st )− g1 − g2.
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and we define the feasible set of per-period utility payoffs as

W (a, st ) ={(w1(s t ), w2(s t )) : wi (s t ) ≥−ai (s t ) for i = 1,2

and
2∑

i=1
wi (s t ) ≤ y(a1(s t ), a2(s t ), st )− (a1(s t )+a2(s t ))}.

(1)

2.2. The breakdown game

In this section we specify how agents agree on the division of the surplus and what happens
in the event of disagreement. In each period agents must decide how to act and how to divide up
the subsequent surplus. We shall suppose that each period is split into two stages with actions
being determined at the first stage and the division of the surplus taking place at the second stage
after output is known (recall that uncertainty is resolved before the action decision).14

The game played by the agents will involve them choosing actions each period contingent
upon the past play of the game. We have somewhat more latitude in specifying the game at the
division stage and we suppose that at the division stage the agents play a Nash demand game.15

In this Nash demand game both agents simultaneously announce utility claims (w1, w2). If these
claims are feasible, viz, (w1, w2) ∈ W (a, st ), then this determines the split of the surplus. If they
are not feasible, then agents receive a breakdown payoff 16 given by

φi (a1, a2, st )−ai

for agent i in state st as a function of the actions taken.17 These breakdown payoffs show how
the payoff to agent i in breakdown depends on his own and the other agent’s contribution. They
may reflect the property rights of the two agents over output, for example, specifying a fixed
percentage split. Analogous to Assumption 1 we shall assume that the breakdown payoffs satisfy:

ASSUMPTION 3: The functionφi (·, ·, st ) : ℜ2+ →ℜ+ is non-decreasing, twice continuously dif-

ferentiable on ℜ2++. Whenever ∂φi (a, st )/∂ai > 0, ∂2φi (a, st )/∂a2
i < 0. Where both actions play a

role ∂2φi (a1, a2)/∂a1∂a2 ≥ 0. In addition, the φi are feasible, i.e. (φ1(a, st ),φ2(a, st )) ∈ C (a, st ),

∂y(a, st )/∂ai > 0 implies ∂φ j (a, st )/∂ai > 0, j 6= i and

(2)
∂φ1(a, st )

∂ai
+ ∂φ2(a, st )

∂ai
≤ ∂y(a, st )

∂ai
∀ st and i = 1,2.

14While it is useful to think of the actions being taken, and observed before the agents decide on their demands, it is
equivalent in terms of the subgame-perfect equilibria to a model in which actions and demands are determined simul-
taneously.

15What we want to capture is that there is an agreement on how output should be split, and failure to abide by it will
lead to breakdown. The Nash demand game is a simple way of operationalizing this idea.

16The idea of going immediately to breakdown if the surplus is not split appropriately (rather than, say, renegotiation)
is in the spirit of repeated game analysis in which deviations from agreed courses of action are punished with severe con-
tinuations. In general, of course, renegotiation proofness may not be satisfied here, although our results do not depend
critically on the breakdown assumption; see Footnote 18.

17An alternative formulation would be to assume that a deviation at the action stage can be punished independently of
going to the breakdown position after output is realized. The idea would be that a deviation is observed by the other agent
who may be able to take measures that affect output or breakdown payoffs. Such a formulation, by making a deviation at
the action stage more easily punishable (leaving aside issues of renegotiation proofness) may shift the emphasis towards
the distribution stage of the game.
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Equation (2) requires that the increase in the total breakdown payoff cannot exceed the
marginal product and given the assumption of y(0,0, ·) = 0 in fact implies that breakdown payoffs
are feasible, (φ1(a, st ),φ2(a, st )) ∈C (a, st ) and φ(0,0, ·) = 0 for i = 1,2.

REMARK: We refer to the assumption that ∂y(a1, a2, st )/∂ai > 0 implies ∂φ j (a1, a2, st )/∂ai > 0 as

our hold-up assumption. It is made to avoid the case where i ’s contribution to output does not

increase j ’s claim on output. In such a case hold-up and underinvestment by j cannot occur in

any efficient equilibrium. Situations with hold-up are our primary focus, and the assumption

allows us to streamline the arguments below.

Assumption 3 places relatively few restrictions on the breakdown payoffs. They are restricted
to be feasible as shown by equation (2) but we do not require that these payoffs exhaust avail-
able output. For example, disagreement may incur a cost, such as lawyers’ fees, which pro-
duces some loss for one or both agents. We mention two special cases which satisfy Assump-
tion 3. First, we may have that each agent can extract a fraction (possibly state-dependent)
of output in the breakdown. In this case φi (a1, a2, st ) = θi (s t )y(a1, a2, st ) and Assumption 3
is satisfied provided θi (st ) > 0, i = 1,2, and

∑2
i=1θi (st ) ≤ 1. Secondly, suppose that output is

an additive function of inputs such that y(a1, a2, st ) = f1(a1, st ) + f2(a2, st ) and φi (a1, a2, st ) =
θi 1(st ) f1(a1, st )+θi 2(st ) f2(a2, st ). In this case agents make separate contributions to joint out-
put and can capture some of their own and some of the other agent’s contribution in the break-
down. Then Assumption 3 is satisfied provided θi j (st ) ≥ 0 with this being strict for i 6= j , and∑2

i=1θi j (st ) ≤ 1, j = 1,2. This latter additive structure includes the case which has been predom-
inantly studied in the literature where only the action of one agent is productive and the other
can extract the entire output in the breakdown; for example, f2 = 0 and θ21 = 1 and this case is
considered in Section 4. The general model has also been studied in the relational contracting
literature (e.g. Halonen (2002))

One might imagine situations where the breakdown payoffs do not satisfy equation (2). For
example both may grab the entire output provided they are first to do so. This is not the situation
we consider here.

REMARK: In this paper we treat the breakdown payoffs as exogenously given. However, a number

of papers in the relational contracting tradition assume that the breakdown payoffs are a conse-

quence of the legal framework or ownership decision and study the effect of different default

structures. For example Halonen (2002) considers a model where the breakdown payoffs allow

either one agent to expropriate the entire output if there is single ownership or both agents to

expropriate half of the output if there is joint ownership. Solving for efficient contracts, as we do

here, is a necessary prior step. Extending our analysis to endogenize the breakdown payoffs is an

avenue for potential future research.

An important part of the analysis will be related to the best response in the breakdown
game. Denote the best-response functions (functions because of the strict concavity the func-
tion phii (a1, a2, ·) in its own argument made in Assumption 3)

aN
i (a j , st ) = argmax

ã∈ℜ+
{φi (ã, a j , st )− ã}.

LEMMA 2: Given Assumption 3, aN
i (a j , st ) is weakly increasing in a j . Moreover we have

aN
i (a j , st ) ≤ a∗

i (a j , st ) for each a j and every state st with strict inequality whenever a∗
i (a j , st ) > 0.

8
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The optimized breakdown payoffs (which result when the defaulting agent chooses the best-
response action in the breakdown game) can be written as follows:

φ1(aN
1 (a2, st ), a2, st )−aN

1 (a2, st ) and φ2(a1, aN
2 (a1, st ), st )−aN

2 (a1, st ).

A Nash equilibrium of the breakdown game occurs where the best-response functions inter-
sect. We denote a Nash equilibrium as a pair (aN E

1 (st ), aN E
2 (st )). As with the efficient action pair

a∗
i (st ) = a∗

i (a∗
j (st ), st ), without further assumptions the Nash equilibrium need not be unique.

However, the potential non-uniqueness is not critical as all Nash equilibria can be Pareto-ranked
(as the best-response functions are non-decreasing). Hence we let (aN E

1 (st ), aN E
2 (st )) denote the

dominant Nash equilibrium and all our results apply relative to this dominant Nash equilibrium.

REMARK: We can use the univalence approach of Gale-Nikaido to establish conditions for the

uniqueness of the Nash equilibrium of the best-response functions. Letting

J =
(

∂2φ1
∂a1∂a1

, ∂2φ1
∂a1∂a2

∂2φ2
∂a2∂a1

, ∂2φ2
∂a2∂a2

)

be the matrix of partial derivatives, then the Nash equilibrium is unique provided J is negative

quasi-definite, that is J + J T is negative definite. This condition is satisfied in the case where

breakdown payoffs are proportionate to outputsφi (a1, a2, st ) = θi (st )y(a1, a2, st ) given θi (st ) > 0.

2.3. Equilibria

To specify what happens in the dynamic game played by the agents we shall assume that
there is reversion to the Nash equilibrium of the breakdown game after any deviation and com-
pute equilibria relative to these punishments. Suppose that a is the current recommended action
vector. If agent i is to deviate then it is clear that the best the agent can do is to choose the best
response action aN

i (a j , st ). Then write Di (a j , st ) to denote the best non-cooperative discounted
payoff that i can get starting from agent j ’s action a j in the history s t , given that she will choose
the current best-response and will be punished thereafter by Nash reversion. During the Nash
reversion phase both agents choose their best responses and hence both will play the Nash equi-
librium of the breakdown game.18 We refer to Di (a j , st ) as the deviation payoff which can be
defined recursively as

Di (a j , st ) =φi (aN
i (a j , st ), a j , st )−aN

i (a j , st )+δ ∑
st+1∈S

πst st+1 Di

(
aN E

j (st+1), st+1

)
.

Given our hold-up assumption it follows that the deviation payoff is strictly increasing in the ac-
tion of the other agent when the other agent’s action increases output. This and other properties
of the deviation payoff are stated in the following lemma.

LEMMA 3: The deviation payoff Di (a j , st ) is a continuous, differentiable and non-decreasing

function of a j . Di (a j , st ) ≥ 0. If ∂y(a1, a2)/∂a j > 0 then Di (a j , st ) is strictly increasing in a j .

18If there are multiple Nash equilibria, this could be any of them, and we are arbitrarily assuming that this is to the
Pareto-dominant one, although it is only sufficient to assume that the continuation equilibrium selected is fixed in each
state. In fact all results go through if one models the post default situation as involving termination of the relationship
and some state dependent outside options being taken which offer a nonnegative utility no more than repetition of the
breakdown Nash. Likewise reversion to the worst subgame perfect continuation, which may be more severe than what
we are assuming, does not affect the results, although in the existing literature the two coincide. Repeated Nash reversion
is a subgame perfect equilibrium (each agent can just demand the whole output each period) and one cannot be held
below this in any equilibrium in which breakdowns do not occur.
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REMARK: For many of our results the deviation payoff could be taken as a primitive of the model.

Alternatively the deviation payoffs could be derived from different assumptions about the nature

of the breakdown game. For example, if there are outside options which can only be taken af-

ter the end of the current period (so agents are locked in for a period after observing the current

state), and they are no better than Di (aN E
j (st+1), st+1) (but nonnegative), then the characteriza-

tion we give will still apply. See Bond (2003) for a model of this type in a related context.

We consider pure-strategy subgame-perfect equilibria of the above game. Let the putative
outcome path of an equilibrium be represented by {a(s t ), w(s t )}∞t=0, where a(s t ) and w(s t ) are
the respective actions and actual payoff divisions (not demands) at time t along the equilibrium
path. This includes the possibility that breakdown has occurred in any period, in which case
w(s t ) = φ(a(s t ), st )− a(s t ). The outcome path {a(s t ), w(s t )}∞t=0 is feasible if w(s t ) ∈ W (a(s t ), st )
for every history s t where W (a(s t ), st ) is defined in equation (1).

As has been stated we assume that there is Nash reversion after any deviation and compute
equilibria relative to these deviation payoffs. It is clear that we need only consider deviations at
the choice of action stage since if an agent were to contemplate deviation at the surplus division
stage the breakdown payoff would be the same except that her action would not be optimized to
maximize the breakdown payoff. Thus the agent can always do no worse than deviate at the ac-
tion choice stage, choosing the action from the best-reply action. Then necessary and sufficient
conditions for this path to be equilibrium relative to Nash-reversion is that it is feasible, and for
i = 1,2, for every s t ,

(3) Vi (s t ) ≡ wi (s t )+E

[ ∞∑
τ=t+1

δτ−t wi (sτ) | s t
]
≥ Di (a j (s t ), st ).

The payoff Vi (s t ) is the discounted payoff to t that i anticipates from the equilibrium, while the
right hand side of (3) is the deviation payoff she would get from deviating from the recommended
action a(s t ) after the history s t . We shall refer to the Vi (s t ) as the continuation utilities. Whenever
(3) holds with equality we say that agent i is constrained — any reduction in her on-equilibrium
path payoff would lead her to deviate at s t ; otherwise we say that agent i is unconstrained. We
refer to such paths that satisfy the inequalities in (3) as self-enforcing and the inequalities them-
selves as the self-enforcing or incentive constraints. Then along such a path, even though there is
no legal enforcement, the payoffs and actions are supported by the deviation payoffs so neither
agent has an incentive to deviate.

A contract or agreement Γ, specifies history contingent actions and utilities a(s t ) and w(s t )
at each date in each state, Γ = {a(s t ), w(s t )}∞t=0. It is self-enforcing if it is both feasible and self-
enforcing, that is, it satisfies both (1) and (3). A self-enforcing agreement then corresponds to
a pure strategy sub-game perfect equilibrium of the game. We shall denote the restriction of a
contract after the history s t by Γ(s t ) where this corresponds to an action-utility profile sequence
{a(sτ | s t ), w(sτ | s t )}∞τ=t that is feasible and self-enforcing for every date and history τ> t contin-
gent on s t . We define the set of self-enforcing agreements as G . Because of our Markov assump-
tion and because all the self-enforcing constraints are forward looking and the time-horizon is
infinite the set of self-enforcing agreements depends only on the current state s at a particular
date t and is independent of the history s t . We shall denote this set of self-enforcing agreements
given current state s by Gs . Associated with each Γ(s t ) ∈ Gst are the discounted payoffs to the
two agents (V1(s t ),V2(s t )) given in equation (3). We shall let V denote the set of payoffs (V1,V2)
which correspond to self-enforcing agreements Γ, and Vst denote the set of equilibrium payoffs

10
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(V1(s t ),V2(s t )). Again where no confusion arises and the state s occurs at date t we shall write
these continuation utilities as (V1,s ,V2,s ).

The sets G and V are not necessarily convex because of the presence of a(s t ) on the right
hand side of equation (3). This potential non-convexity does not affect our main characterization
results and therefore we do not impose further restriction on the model to guarantee convexity.19

We define the Pareto-frontier of the payoff set by the set

Λ(V ) = {(V1,V2) ∈ V | 6 ∃(Ṽ1,Ṽ2) ∈ V with(Ṽ1,Ṽ2) ≥ (V1,V2)andṼi >Vi for i = 1or2}

with Λ(Vs ) denoting the Pareto-frontier in state s. As our objective is to characterize the set of
Pareto-efficient self-enforcing agreements (when looked at from the outset of the game) we shall
be interested in the setΛ(V ). We shall say that agreements that correspond to this Pareto-frontier
are optimum or optimum contracts and refer to the corresponding actions as optimum actions.

3. RESULTS

This section provides the main results of the paper. The existence of a optimum contracts
is established in Section 3.1. Section 3.2 demonstrates when actions will be inefficient and Sec-
tion 3.3 proves the backloading principle. The long-run properties are examined in Section 3.4
and Section 3.5 which show convergence to a stationary phase which maximizes surplus amongst
all self-enforcing contracts. Finally Section 3.6 will consider an example with no uncertainty to
illustrate our results. The case where only one agent contributes to output is considered in Sec-
tion 4.

3.1. Existence

We first establish that efficient self-enforcing contracts do exist. This follows from a straight-
forward argument showing that the payoff set is compact.

LEMMA 4: The set of pure-strategy subgame perfect equilibrium payoffs V is non-empty and

compact. Hence optimum contracts exist.

We shall say that a self-enforcing contract is trivial if a(s t ) = 0 for all t . From Assumption 1(i)
on the production function, it follows that this corresponds to a point (0,0) ∈ V . Lemma 4 does
not imply the existence of an optimum non-trivial contract so that it is possible thatΛ(V ) = (0,0)
and all our results will apply (trivially) in this case. Nevertheless we shall establish in the next sec-
tion that in any optimum self-enforcing contract the actions are never below the Nash reaction
functions and never below the Nash equilibrium actions so that if the Nash equilibrium actions
are positive a non-trivial contract will exist.20

3.2. Actions at a particular date

We shall consider the dynamic path of actions in sections 3.3 and 3.5 but in this section we
consider actions at a given date and how they relate to the Nash best-response and conditionally
efficient actions. Our method is to argue by contradiction, changing an assumed optimal con-
tract at a particular date after a particular history. If this change satisfies the self-enforcing and
feasibility constraints for both agents at that date, and a Pareto-improvement has been gener-
ated, then all prior self-enforcing constraints also hold as by construction the future utility en-

19There are special cases where the sets are convex. The additive production technology case is one such example.
20Although it may be trivial in the sense that it is equal to the a repetition of the Nash equilibrium of the break-down

game.
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tering these constraints has not been decreased. Equally all future constraints must continue to
hold. Hence this leads to a Pareto-superior contract—contrary to the assumed optimality of the
original contract.

As we are considering only a particular date we shall, in what follows, suppress the history
s t or state st where there is no ambiguity, and we shall refer to the current state as s and use r to
index the state next period where necessary. We first show that actions cannot be below the Nash
best-response functions aN

i (a j ). The intuition is that if any agent’s action is below the Nash best-
response action, the action can be increased and surplus divided in such a way that neither agent
has an incentive to move to the breakdown and this increase in action will increase output and
utility. To see this suppose that a2 is below the reaction function (but a1 is not). As agent 2’s action
is increased, because of the hold-up nature of the problem, this will increase agent 1’s deviation
payoff; suppose however we give agent 1 extra consumption equal to the increase in her deviation
payoff to stop her reneging. Since this will be approximately the share she can appropriate of the
extra output, giving the remainder to agent 2 gives him what he would get from increasing his
action in the breakdown game. Since he is below his optimal breakdown action this will increase
his utility too. Hence both agents can be made better off. In the following statement, recall that
aN E is the dominant Nash equilibrium of the breakdown game.

THEOREM 1: In any optimum self-enforcing contract, after any positive probability history s t ,

ai ≥ aN
i (a j ), and (a1, a2) ≥ aN E .

We would also like to say how the optimum actions relate to the conditionally efficient ac-
tions. This is less clear cut as we shall show that optimum actions can be above or below the con-
ditionally efficient actions. We can however, show that an agent’s action is only under-efficient
if the other agent’s self-enforcing constraint binds and is only over-efficient if they are at their
subsistence consumption (of zero).

THEOREM 2: In an optimum contract after any positive probability history, (i) If agent i is

unconstrained (i.e. Vi > Di (a j )), then a j ≥ a∗
j (ai ); (ii) If agent i has positive consumption (ci > 0),

then ai ≤ a∗
i (a j ).

REMARK: Theorem 2 relates the optimum actions to the conditionally efficient level. It is there-

fore, unlike Theorem 1, completely independent of the default structure we have specified.

The intuition behind the proof is straightforward. If the self-enforcing constraint is not bind-
ing then there is no cost (but a surplus gain) to increasing the other agent’s action or investment
up to the conditionally efficient level. Equally if an action, say agent 1’s action, is above the condi-
tionally efficient level it will be profitable to reduce it (surplus will increase). This cannot tighten
agent 2’s self-enforcing constraint so provided agent 2’s consumption can be held constant this
will lead to a Pareto-improvement. Only if agent 1 already has zero consumption will this be
impossible: since output will fall, then agent 2’s consumption must fall and he will be worse off.

There are two straightforward implications of Theorem 2(ii). Firstly it is impossible in an
optimum non-trivial contract that both agents overinvest (they cannot both have zero consump-
tion). Secondly an agent cannot be permanently overinvesting (i.e. with probability one) as this
would imply that her consumption is always zero, which cannot be self-enforcing.

3.3. Backloading

As discussed in the introduction there is a well known backloading principle that applies
when commitment by one agent is limited. This principle says that ceteris paribus transfers to
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that agent should be backloaded into the future if the commitment constraint is binding, to pro-
vide a carrot in the future that would be forgone if the agent reneged. The operation of this prin-
ciple in our environment where both agents undertake an action or investment and neither can
commit is more subtle as discussed earlier. Nevertheless we shall show that backloading applies
to an extent in this case and has the additional implication that one agent may overinvest in the
early periods of an optimum contract.

We start by showing that allocating all of the current output to an agent guarantees, under
certain conditions, that this agent’s self-enforcing constraint is not violated. This is proved in
the next lemma. The basic idea is straightforward: an agent can get no higher current period
payoff by defaulting no matter how big a share she can claim in breakdown, as she is already
getting 100%, and so has no short-run gain, although since in default the agent may be able
to choose a more advantageous action some care is needed in making this argument. In more
detail: Suppose agent 2 gets allocated all the current output. Consider starting from agent 2’s
best-response (in the breakdown game) to agent 1’s action, and hold the latter fixed; if agent 2’s
action is increased and he is being allocated all of output, then his utility will be rising until his
efficient response is reached, where his payoff is maximized. Provided a2 is above or equal to
his best-response, but not higher than the conditionally efficient action, he is weakly better off at
a2 getting all consumption than best responding—even if he can claim all of the output—in the
breakdown. Hence the self-enforcing constraint is satisfied, even if deviating leads to no future
losses (i.e. even if agent 2’s future payoff is as low as it can be). This property is important for our
backloading result as it will enable us to check that the self-enforcing constraint for an agent is
satisfied by checking that that agent is receiving all the available output.21

LEMMA 5: If c2 = y(a1, a2), aN
2 (a1) ≤ a2 ≤ a∗

2 (a1) and V2,r ≥ D2(aN E
1,r ,r ), all r ∈S , then

(4) c2 −a2 +δ
∑

r∈S

πsr V2,r ≥ D2(a1);

moreover the inequality is strict if a2 > 0 and y(a1, a2) > 0. Likewise with the indices swapped.

We now present our main backloading result. For notational convenience we will treat ac-
tions and consumptions at a particular date as random variables and write at

i and c t
i for ai (s t )

and ci (s t ) etc.

THEOREM 3: (i) If at t̃ in an optimum contract (after positive probability history s t̃ ), agent 1,

say, is unconstrained and a t̃
1 < a∗

1 (a t̃
2), then at all previous dates t < t̃ on the same history, c t

2 = 0;

(ii) If at t̃ in an optimum contract (after positive probability history s t̃ ), say agent 2 has a t̃
2 > a∗

2 (a t̃
1),

then at all previous dates t < t̃ along the same history c t
2 = 0.

The claim of Theorem 3(i) is that if in any optimum contract agent 1 is under-investing but
unconstrained then agent 2 will have been held to his subsistence consumption level in all pre-
vious periods along the history to that point. (Recall that if agent 1 is underinvesting, this is
because any further investment by agent 1 will lead to agent 2 preferring to take his increased
default payoff than stick to the contract.) The idea is that if agent 2 has positive consumption
earlier, agent 1’s current action can be increased (increasing current surplus) and at the same
time consumption can be transferred at the current date to agent 2 to stop him reneging; agent 1
may be worse off currently but can be compensated for her increased effort by agent 2 trans-
ferring consumption at the earlier date. Essentially, the backloading of agent 2’s consumption

21Note this result does not refer to optimum contracts and applies to any self-enforcing contract, optimum or not.
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allows his later constraint to be relaxed. Since agents are risk neutral they do not care about the
timing of consumption flows (keeping the action plans fixed) if the expected discounted value is
the same, but the backloading has permitted current surplus to be increased, leading to a Pareto-
improvement. It is important though that agent 1 is unconstrained for this result to hold and we
will show later that it may not apply if agent 1 is also constrained at the later date.

We shall see below that the backloading principle extends to actions as well as consumption
and that actions may be above the conditionally efficient levels in the early periods of an efficient
contract. This however involves an efficiency loss not incurred by backloading consumption. So
reducing consumption is more efficient than increasing the action. Nevertheless it may be opti-
mal on the margin to increase the action as for a small increase starting from the efficient level
the loss will be of second-order and it will enable the action of the other agent to be increased
without violating the self-enforcing constraint. Theorem 3(ii) therefore demonstrates that if ever
agent 2 is overinvesting then consumption has already been backloaded to the maximum extent
possible in all previous periods.

3.4. Second-Best Surplus Maximization

In the next section we shall show that the optimum contract converges to the point that
maximizes joint utility. In this section we shall show that the maximization of joint utility in-
volves choosing the actions that maximizes current joint surplus subject to the self-enforcing
and feasibility constraints.

We begin by defining the actions which maximize current joint surplus subject to these con-
straints and the joint utility maximizing contract.

DEFINITION 1: An action pair a in state st at date t is current joint surplus maximizing if

a ∈ argmaxa∈ℜ2+ {y(a1, a2, st )− a1 − a2: ∃ a self-enforcing contract Γ(s t ) ∈ Gst starting at date t

with at = a}.

DEFINITION 2: A self-enforcing contract Γ(s t ) ∈ Gst at date t in state st is joint utility max-

imizing if the sum of the corresponding continuation utilities is maximized across all possible

self-enforcing contracts: (V1,V2) ∈ argmax(V1,V2)∈Vst
(V1 +V2).

Note that a current joint surplus maximizing a is found by looking across all self-enforcing
contracts starting from s and picking one that maximizes the surplus in the first period of the
contract, irrespective of what happens later.

To show the connection between a joint utility maximizing and current joint surplus maxi-
mizing self-enforcing contract, it will be useful to consider an intermediate case where the action
profile maximizes current joint surplus for a given set of continuation utilities.

DEFINITION 3: We say that the action vector a is myopic surplus maximizing in state s

relative to continuation utilities (V1,r ,V2,r )r∈S if there is an associated consumption vector c

such that (a,c) ∈ argmax(a,c)∈R4+ (y(a1, a2, s)−a1 −a2) s.t. ci −ai +δ∑
r∈S πsr Vi ,r ≥ Di (a j , s), and

c1 + c2 ≤ y(a1, a2) for i = 1,2, j 6= i .

Myopic surplus maximizing actions are not necessarily optimum since they take the con-
tinuation utilities as given and do not take into account the trade-off between actions today and
actions in the future. Neither are optimum actions necessarily myopic surplus maximizing since
one agent may be worse off if the myopic surplus maximizing actions were chosen. The current
joint surplus maximizing actions are, however, myopic surplus maximizing for the corresponding
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future continuation utilities. In the next two lemmas we show first that at myopic surplus max-
imizing actions, when the continuation utilities are replaced by any continuation utilities above
the continuation deviation utilities, if all current output is allocated to one agent then the self-
enforcing constraint holds for that agent, and secondly, the current self-enforcing constraints for
both agents are simultaneously satisfied by some division of output provided the new continua-
tion utilities sum to a larger number than the original ones do.

LEMMA 6: If the action vector ã is myopic surplus maximizing for some
(
V1,r ,V2,r

)
r∈S with

Vi ,r ≥ Di (aN E
j ,r ,r ) all r ∈S , i , j = 1,2, j 6= i , then

(5) y(ã1, ã2, s)− ãi +δ
∑

r∈S

πsr Di (aN E
j ,r ,r ) ≥ Di (ã j , s),

for i , j = 1,2, j 6= i ; i.e. giving all output to agent i implies that the current self-enforcing constraint

continues to hold for i even if the continuation utilities are replaced with the deviation payoffs.

LEMMA 7: Take any myopic surplus maximizing action a for some
(
V1,r ,V2,r

)
r∈S ; then given

any alternative continuation utilities (V̂1,r ,V̂2,r )r∈S satisfying, for all r ∈S , V̂1,r +V̂2,r ≥V1,r +V2,r ,

V̂i ,r ≥ Di (aN E
j ,r ,r ), there is a division of y(a1, a2) such that the self-enforcing constraints are satisfied

with the same action a.

The argument of Lemma 7 is true for any (V̂1,r ,V̂2,r ) satisfying V̂1,r + V̂2,r ≥ V1,r +V2,r , V̂i ,r ≥
Di (aN E

j ,r ,r ). Thus if we are looking at self-enforcing continuation contracts, it holds for joint utility

maximizing points which by definition satisfy the first inequality, and since a ≥ aN E , Di (a j ,r ) ≥
Di (aN E

j ,r ,r ), so the second inequality holds too. So we can establish that any joint utility maximiz-
ing equilibrium involves current joint surplus maximization.

THEOREM 4: Any joint utility maximizing self-enforcing contract starting at date t from s t ,

Γ(s t ), has with probability one current joint surplus maximizing actions at each date τ≥ t .

The theorem is intuitive since changing actions away from the current joint surplus maxi-
mizing ones will lower utility at that particular date and hence overall utility. What the theorem
shows is that there is no additional benefit of changing actions in terms of relaxing one of the
self-enforcing constraints.

3.5. Convergence

In this section we show that any optimum contract converges to the joint utility maximiz-
ing self-enforcing contract. This is perhaps a surprising result given the generality of the model
and stochastic structure. We shall show first, however, that if at any date t and state s the self-
enforcing constraints bind for both agents and there is no over-efficiency of actions, then the
contract always involves joint utility maximization from the next period onward. Hence from
Theorem 4 this involves the surplus maximizing actions at every subsequent date.

LEMMA 8: If in an optimum contract s t has positive probability, both self-enforcing con-

straints bind at t , and at
i ≤ a∗

i (at
j ), i , j = 1,2, i 6= j , then the contract must specify joint utility

maximization from t +1 (i.e. in every positive probability successor state).

The idea behind Lemma 8 is that if it were the case that in some successor state r ′ joint utility
was not maximized, then it would be possible to replace (V1,r ′ ,V2,r ′ ) by

(
V̂1,r ′ ,V̂2,r ′

) ∈ Vr ′ such that
V̂1,r ′+V̂2,r ′ >V1,r ′+V2,r ′ and demonstrate a Pareto-improvement. To show this it is necessary that
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both agents were previously constrained. If either agent were unconstrained then replacing Vi ,r

with V̂i ,r might lower utility for one agent.

We now present the convergence result that an optimum contract has actions which con-
verge almost surely to current joint surplus maximizing actions (and, a fortiori, joint utility max-
imization). To show this, we first show that there exists a stopping time which is finite almost
surely such that both c1 > 0 and c2 > 0 at some point before this time. The argument is intuitive:
provided at least one agent has a strictly positive payoff, then one agent, say agent 1, must take a
positive action at some point. Thus agent 1 must receive positive consumption at some point not
too far after the action was taken, or else her overall payoff would be negative, something which is
inconsistent with self-enforcement (an agent can always guarantee herself at least zero by taking
a null action each period). Likewise, by the fact that agent 1 took a positive action, agent 2 can get
a positive share of that output by the hold-up assumption on the breakdown payoffs, and hence
must have positive continuation utility at this point. Thus agent 2 must also anticipate posi-
tive consumption. This situation happens repeatedly in an optimum contract, and thus positive
consumption for both agents occurs with probability one (the proof is only complicated by the
need to ensure that the number of periods before positive consumption is received is bounded).
Next, once both agents have had positive consumption, our backloading results imply that there
cannot be overinvestment, and if either agent is unconstrained then actions are at the efficient
level. Alternatively, if both agents are constrained, we know that joint utility maximization occurs
thereafter by the previous lemma.

THEOREM 5: For any optimum contract, there exists a random time T which is finite with

probability one such that for t ≥ T , at is current joint surplus maximizing.

We know from Theorem 3(ii) that if both agents have had positive consumption at some date
prior to t̂ , then for t > t̂ , at

i ≤ a∗
i (at

j ) for i = 1,2. However, if agent i is unconstrained at t , then

it follows from Theorem 3(i) that at
i ≥ a∗

i (at
j ), otherwise the consumption of agent j could not

have been positive prior to t̂ . Equally from Theorem 2(i), at
j ≥ a∗

j (at
i ) as there is no need to hold

agent j ’s investment below the efficient level if agent i is unconstrained. Thus we can conclude
that the only case of inefficiency occurs when both agents are constrained. We thus have the
following corollary.

COROLLARY 1: There exists a random time T , finite with probability one, such that for t ≥ T ,

and for any state st ∈S in which efficiency a∗ is not achievable for any division of the surplus (i.e.

for which the current joint surplus maximizing actions are inefficient), then both self-enforcing

constraints bind and there is underinvestment by both agents.

The next theorem considers the canonical two-sided action case in which both actions are
always positive. This allows us to present the sharpest results in terms of optimum action levels
relative to unconstrained efficient levels. It shows there will be two phases, one (which may not
exist) is a backloading phase with zero consumption and overinvestment by one of the agents
(the same agent throughout the phase), and the other phase (which exists with probability one)
will have no overinvestment, but consists of a possible initial transition period which is then
followed by either efficient actions, if they can be sustained in equilibrium in that state, or both
constraints binding and positive consumption.

THEOREM 6: Whenever the Nash actions aN E
i ,s are positive, i = 1,2, all s ∈S , then there exists

i ∈ {1,2} and a random time t̃ , ∞> t̃ ≥ 0 with probability one, such that an optimum satisfies a.s.:

Phase 1: c t
i = 0, at

i > a∗
i (at

j ) and at
j ≤ a∗

j (at
i ), for 0 ≤ t < t̃ , j 6= i ;
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Phase 2: at
1 ≤ a∗

1 (at
2) and at

2 ≤ a∗
2 (at

1) for t ≥ t̃ , and after the first period of phase 2, if a∗ is current

surplus maximizing in st (i.e. can be sustained) then at = a∗; otherwise a < a∗, both constraints

bind, and c > 0.

The requirement of positive Nash actions is a simple way to ensure that optimum actions
at each date are positive by virtue of Theorem 1. We need to assume this to prove Theorem 6
for two reasons. Firstly, even if both actions are productive, it may be that overinvestment does
not occur in the backloading phase. This might be the case if ai = 0 and a∗

i (a j ) = 0 and the
marginal product at zero is well below one. In this case the optimum action may be at the corner
solution where the marginal product is below one and the optimum action is zero. Secondly,
underinvestment may not occur in the second phase as it possible that the efficient action levels
are zero.

If current surplus is not maximized after the first period of Phase 2, then a 6= a∗ but by The-
orem 6 this implies both constraints bind, in which case current surplus is maximized thereafter.
Hence we have the following corollary.

COROLLARY 2: With probability one, current surplus is not maximized in at most two periods

of Phase 2.22

3.6. Example with No Uncertainty

We consider a simple example to illustrate our results. This will be the simplest possible
example with an additive production technology and no uncertainty. The example is very similar
to the model of joint production presented by Garvey (1995).23 For simplicity in our example
both agents can grab all the other’s output but if they do so they lose their own output.

We assume the production function is

y(a1, a2) = f1(a1)+ f2(a2) = 2b
p

a1 +2
p

a2

for a parameter b ∈ (0,1). The breakdown payoffs are of the formφi (a1, a2) = θi 1 f1(a1)+θi 2 f2(a2)
where the parameters are θ11 = θ22 = 0 and θ12 = θ21 = 1.

The efficient actions are a∗
1 = b2 and a∗

2 = 1 with a maximal efficient surplus of f1(a∗
1 )+

f2(a∗
2 )−a∗

1 −a∗
2 = 1+b2. With θ12 = θ21 = 1, the breakdown payoffs are

φ1(a1, a2) = f2(a2) = 2
p

a2 and φ2(a1, a2) = f1(a1) = 2b
p

a1.

Given the additive technology the Nash best-response functions are dominant strategies which
is simply not to invest, aN

1 = aN
2 = 0.24 Hence the deviation payoffs are25

D1(a2) = (1−δ)2
p

a2 and D2(a1) = (1−δ)2b
p

a1.

22In the case of additive production technology this can be strengthened to current surplus being maximized in all but
the first period of Phase 2.

23Garvey (1995) has linearly additive outputs and quadratic cost functions but this is equivalent to our formulation
with square-root production functions and linear investment costs. His concern is with finding a legal structure, joint
ventures or integration, that is best suited (in terms of a minimum discount factor) to sustaining the efficient investment
levels. He does not therefore examine the main concern addressed here, namely the temporal structure of investments.

24Strictly Theorem 6 does not apply since the Nash equilibrium actions are zero. However, the importance of the as-
sumption of positive Nash equilibrium actions was to rule out trivial contracts but such contracts are not optimal for the
parameter values chosen and hence the substance of the theorems does apply.

25For the purposes of calculating the example all per-period payoffs have been multiplied by (1−δ).
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We consider the special case of δ= 1/3 and b =p
3/3.26 The solution can be found by first finding

the efficiency stationary solution and then working backwards in time given the above results.
The stationary solution can be found by solving the two equations

a1 = b2a2 and 2(1−δ)
p

a2 +2b(1−δ)
p

a1 = 2b
p

a1 −a1 +2
p

a2 −a2.

For the given parameter values of b and δ the solution to this equation is a1 = 4b2δ2 = 4/27 and
a2 = 4δ2 = 4/9 The net surplus generated is 2b

p
a1 − a1 +2

p
a2 − a2 = 32/27 and this surplus is

divided so that w1 = 4δ(1−δ) = 8/9 and w2 = 4bδ(1−δ) = 8/27.27

Having calculated the stationary solution, and given that we know the contract will converge
to the stationary solution, it is possible to work backwards and calculate all other points on the
frontier. For example for values of V1 close to the stationary value the contract will move to the
stationary solution next period, but still both self-enforcing constraints will bind. Since the self-
enforcing constraint for agent 1 binds

V1 = 2(1−δ)
p

a2

and a2 is determined once V1 is known. Equally w1 is found from the recursive equation

(1−δ)w1 +δV +
1 =V1

where V +
1 = 4δ(1−δ) is the continuation value for agent 1 and V +

2 = 4b2δ(1−δ) is the continuation
utility for agent 2. As w1, a2 are functions of V1, a1 as a function of V1 can be found as the solution
to

(1−δ)(2b
p

a1 −a1 +2
p

a2 −a2 −w1)+δV +
2 = 2b(1−δ)

p
a1.

Using this value of a1 the Pareto-frontier can then be computed from the self-enforcing con-
straint V2 = 2b(1−δ)

p
a1. Since we have assumed that both self-enforcing constraints bind, the

endpoints of this part of the Pareto-frontier function are determined either by a non-negativity
condition on the action or at the point where the efficient level of investment can just be sus-
tained. At the left-hand endpoint for example we either have a1 = b2 or a2 = 0. At the right-hand
end of this interval a1 = 0 and the slope of the frontier is −∞ at this point. Thus the right-hand
end point is the full extent of the domain of the frontier. However, the frontier is extended to
the left and we can now check how the frontier extends. Proceeding as before but taking a2 = b2

we can again compute the Pareto-frontier. The left-hand endpoint of this section of the fron-
tier is determined where the zero consumption starts to bind which is at the point given by
(1−δ)(4δ2 −b2) = 2/27. The slope of the Pareto-frontier at this point is downward sloping (dif-
ferentiating the Pareto-frontier) and so the frontier extends further to the left, where the con-
sumption of agent 1 is zero. To calculate this part of the frontier we need to use the information
just calculated to obtain the continuation values. Analytically this is more complex and involves
solving a cubic equation. Nevertheless, it is possible to obtain an analytic solution for that part
of the Pareto-frontier.

The solution is illustrated in Figure 1. The upper left part of the diagram draws the Pareto-
frontier. This function is differentiable and the left hand endpoint of the frontier is determined

26In this example a non-trivial contract is sustainable for any δ> δ∗ = 0 and an efficient stationary solution is sustain-
able if δ≥ δ∗ = 1/2. The value δ= 1/3 is chosen below this critical value so that the efficient outcome is not sustainable in
the the stationary solution but large enough to generate simple but interesting dynamics for the optimum contract. The
value of b is simply chosen for convenience.

27The corresponding values for consumption are c1 = 4δ((1−δ)+δb2)) = 28/27 and c2 = 4δ(δ+b2(1−δ)) = 20/27.
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at the point where this function has a zero slope.28 The upper-right part of the diagram plots the
net surplus showing that net surplus is maximized at the point on the frontier which maximizes
V1 +V2 (Theorem 4) where the slope of the frontier is −1. The lower-right part of the diagram
plots agent 2’s action level against V1 and shows that she is always underinvesting (the efficient
level is a∗

2 = 1). The lower left part of the diagram shows agent 1’s action. There is overinvesment
for low values of V1. At this point in the contract consumption c1 = 0 and the continuation value
for V1 will be in the range (2/27,4

p
7/9

p
3). Thus next period the action a1 is chosen efficiently,

a1 = 1/3. The next continuation values are the utility maximizing ones at the stationary point.
Thus in this example and for the parameters we’ve used there is a most one period of Phase 1
where there is overinvestment and after two periods the stationary solution where both agents
are underinvesting is reached.29
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Figure 1: PARETO-FRONTIER, NET SURPLUS AND ACTIONS

4. ONE-SIDED INVESTMENT

In this section we discuss the case where only one of the two agents makes an investment
which has been the subject of most of the previous literature (see for example, Albuquerque and
Hopenhayn (2004) and Thomas and Worrall (1994)). We shall show that in this case there is no
overinvestment by the contributing agent.30 We’ll suppose that this is agent 1 and assume that
agent 2 never contributes towards output. We therefore write output as y(a1, a2, st ) = f (a1, st )
and the breakdown payoff for agent 1 as φ1(a1, st ) ≤ f (a1, st ). In this case agent 1’s self-enforcing

28Numerical calculation gives the left hand value for
¯
V1 = 0.0524532.

29For different parameter values there may be more than one period of Phase 1 in which there is overinvestment.
30A differences arises in the one-sided and two-sided cases since when only one agent takes any action it is not always

possible to adjust actions to smoothly raise or lower the continuation utilities for both agents as is the case with the
two-sided case.
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constraint reduces to a more conventional nonnegative surplus constraint,

V1(s t ) ≥ D1(st ) =φ1(aN E
1 (st ), st )−aN E

1 (st )+δ ∑
st+1∈S

πst st+1 D1(st+1).

We show that agent 1 never overinvests in these circumstances. This is perhaps unsurprising
in view of the idea that backloading of utility will only apply to agent 2, the agent whose self-
enforcing constraint can prevent efficient actions by agent 1. Overinvestment (and hence c1 = 0)
implies a negative current utility for agent 1, and as the future goes against agent 1, this would
lead to a negative overall utility, something which would violate agent 1’s constraint.

THEOREM 7: In the case of one-sided investment where, say, agent 1 is the only contributor

to output, then at any date t and state s, at
1 ≤ a∗

1 ; overinvestment never occurs in an efficient self-

enforcing contract.

5. CONCLUSION AND FURTHER WORK

In this paper we have analyzed the dynamic properties of a relational or self-enforcing con-
tract between two risk-neutral agents both of whom undertake a costly investment or action
which yields joint benefits. We have shown that there is convergence to a stationary state at
which the net surplus is maximized. Provided the optimum contract is non-trivial it exhibits a
two-phase property. In the first phase (which may or may not occur) there is backloading of the
utility of one of the agents. In this phase that agent has zero consumption and will overinvest
while the other agent will underinvest. In the next phase (which will occur with probability one)
there is no overinvestment and after the first period of the this phase there will be either efficient
investment, if that is sustainable in that state, or underivestment by both agents and with both
agents constrained.

The analysis presented in the paper is applicable to a wide variety of situations. It will apply
to situations of joint ventures where two partners expend individual effort or investment to im-
prove profits. It will apply to a labor market situation where both employer and employee invest
in improving the productivity of the job match and it could apply to situations of international
trade where trading partners undertake investments to reduce the cost or improve the efficiency
of trade. It can also apply with some re-working to a public good model where agents have to
decide upon their individual contributions to a public good that benefits both agents.

The model can be extended in a number of directions. An obvious extension is to allow
for risk aversion. The consumption constraints assumption introduces some risk aversion but
allowing smoothly concave preferences will be an important extension as it will bring together
the strand of the literature on self-enforcing contracts which concentrates on risk-sharing with
the strand which emphasizes the actions undertaken by agents. It will also broaden the range
of applications to include, for example, household behavior and investment decisions in village
economies. Another extension is to treat the actions as real investments with capital accumula-
tion such as in a model of sovereign debt.

APPENDIX

PROOF OF LEMMA 1: By Assumption 1(v) the conditionally efficient actions are uniquely
defined. From the continuity and differentiability assumptions these are continuous functions.
Given complementarity (Assumption 1(vii) the conditionally efficient action functions are non-
decreasing. 2
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PROOF OF LEMMA 2: We drop the notational dependence on st as it is inessential. Unique-
ness of the best responses follows from Assumption 1(v). We have ∂y(a∗

i (a j ), a j )/∂ai ≤ 1 with
equality if a∗

i (a j ) > 0. By Assumption 3, ∂φi (a∗
i (a j ), a j )/∂ai < ∂y(a∗

i (a j ), a j )/∂ai . Hence if we
have a∗

i (a j ) > 0, then either aN
i (a j ) = 0 and we’re done or

1 = ∂φi (aN
i (a j ), a j )

∂ai
= ∂y(a∗

i (a j ), a j )

∂ai
> ∂φi (a∗

i (a j ), a j )

∂ai

and then it follows from the the strict concavity of φi in its own argument (Assumption 3) that
aN

i (a j ) ≤ a∗
i (a j ). On the other hand suppose that a∗

i (a j ) = 0 and aN
i (a j ) > 0. Then

1 = ∂φi (aN
i (a j ), a j )

∂ai
< ∂y(aN

i (a j ), a j )

∂ai

but

1 ≥ ∂y(0, a j )

∂ai
> ∂y(aN

i (a j ), a j )

∂ai

by the assumption of strictly diminishing marginal product. Hence we have a contradiction. 2

PROOF OF LEMMA 4: Consider the strategy for each agent of always playing the breakdown
Nash equilibrium actions aN E

i (st ), and demanding the entire output. By definition these are
short-run mutual best responses if the game ends up in breakdown; this occurs unless output
is zero. But in the latter case closedness follows from standard arguments: Briefly, the action-
consumption profiles after any history s t must be bounded in equilibrium. To see this note that
assumptions on the action sets and the production function mean that actions can be restricted
to some closed and bounded set Ã(st ) ⊆ℜ2+ and hence the per-period utility payoffs also belong
to a closed and bounded subset W̃ (st ) ≡ {W (a, st ) : a ∈ Ã(st )}. Thus we can restrict the action-
consumption pairs to a compact subset, say z(st ) ⊂ R4. Hence the product space

∏
st z(st ) is

sequentially compact in the product topology as it is a countable product of compact spaces.
Thus any limiting sequence of equilibrium payoffs has a convergent sub-sequence of contracts
that converges pointwise to the limiting contract. Now consider the payoffs associated with this
sequence of contracts. By the dominated convergence theorem the limit must satisfy the self-
enforcing constraints (3) since payoffs are continuous functions of contracts in this topology with
δ < 1, and the constraints are weak inequalities. Thus the limit is an equilibrium, and thus the
limiting sequence of equilibrium payoffs has a limit point which corresponds to an equilibrium.
It follows the payoff set V is closed and bounded and hence compact subset of R2. Since the
Pareto-frontier Λ(V ) is a part of the boundary of this set, it follows that optimum contracts exist.
The existence of an optimum contract then follows by maximizing the sum of utilities over this
set. 2

PROOF OF THEOREM 1: The proof proceeds in two parts. The first is to show that one can-
not simultaneously have a2 < aN

2 (a1) and a1 > aN
1 (a2) or visa-versa. Thus the actions must be

either above both reaction functions or below both reaction functions. The next part shows that
a < aN E is impossible, ruling out that both are below the reaction functions since the reaction
functions are non-decreasing from Lemma 2.
Part A: Suppose then that at some date t , a2 < aN

2 (a1) and a1 > aN
1 (a2). Consider a small increase

in a2 of ∆a2 > 0. The consequent increase in output is approximately
(
∂y(a1, a2)/∂a2

)
∆a2. This

is positive by the fact that a2 < aN
2 (a1); from Assumptions 1 and 3, ∂y(a1, a2)/∂a2 = 0 would im-

ply φ2(a1, a′
2) is constant for all a′

2 ≥ a2, and so a2 ≥ aN
2 (a1), contrary to assumption. Change the

contract by giving agent 1 the increase in her deviation payoff, which is to a first order approxi-
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mation D ′
1(a2)∆a2 =

(
∂φ1(aN

1 (a2), a2)/∂a2
)
∆a2 (by the envelope theorem). The remainder of the

extra output, approximately (
∂y(a1, a2)

∂a2
− ∂φ1(aN

1 (a2), a2)

∂a2

)
∆a2,

is given to agent 2. Keep the future unchanged. We now show that these changes meet the con-
straints and lead to a Pareto-improvement, contrary to the assumed optimality of the contract.
First, agent 1 is no worse off (in fact better off) and by construction her constraint is satisfied. For
agent 2, the change in current utility to a first-order approximation is

(A.1) ∆w2 '
(
∂y(a1, a2)

∂a2
− ∂φ1(aN

1 (a2), a2)

∂a2
−1

)
∆a2.

Since a2 < aN
2 (a1) and ∂2φ2/∂a2

2 < 0 on
(
a2, aN

2 (a1)
)

(by Assumption 3, given thatφ2(a1, aN
2 (a1)) >

0),

(A.2)
∂φ2(a1, a2)

∂a2
> ∂φ2(a1, aN

2 (a1))

∂a2
= 1

(where the last equality follows by virtue of aN
2 (a1) > 0 so there is an interior solution). Since

a1 > aN
1 (a2), and ∂2φ1/∂a1∂a2 ≥ 0, we have

(A.3)
∂φ1(aN

1 (a2), a2)

∂a2
≤ ∂φ1(a1, a2)

∂a2
.

Together (A.2), (A.3) and (2) imply the term in brackets in the right hand side of (A.1) is positive,
and thus for ∆a2 small enough, ∆w2 > 0. Agent 2’s constraint is satisfied as a1 and hence D2(a1)
are unchanged, while his utility has risen, so a Pareto-improvement has been demonstrated. A
symmetric argument applies if a1 < aN

1 (a2) and a2 > aN
2 (a1).

Part B: Suppose that (a1, a2) ≤ (aN E
1 , aN E

2 ) with strict inequality for at least one agent, say 2, and
consider replacing the actions with the Nash equilibrium actions aN E

i so that output rises from
y(a1, a2) to y(aN E

1 , aN E
2 ). We giveφ1(aN E

1 , aN E
2 )−φ1(a1, a2) of this increase to agent 1 and the rest,

to agent 2. Hence

(A.4) ∆w1 =φ1(aN E
1 , aN E

2 )−φ1(a1, a2)− (aN E
1 −a1)

and

∆w2 = y(aN E )− y(a)− (
φ1(aN E )−φ1(a)

)− (aN E
2 −a2)

≥φ2(aN E )−φ2(a)− (aN E
2 −a2),

where the inequality follows from integrating equation (2). By definition of (aN E
1 , aN E

2 ),

Di (aN E
j ) =φi (aN E

1 , aN E
2 )−aN E

i +δ ∑
r∈S

πsr Di (aN E
j ,r ,r ).

Hence for agent 1

D1(aN E
2 )−D1(a2) =φ1(aN E

1 , aN E
2 )−φ1(aN

1 (a2), a2))− (aN E
1 −aN

1 (a2))
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with a similar expression for agent 2. Agent 1’s constraint is not violated as

∆w1 −
(
D1(aN E

2 )−D1(a2)
)=φ1(aN

1 (a2), a2))−φ1(a1, a2)− (aN
1 (a2)−a1) ≥ 0,

where the inequality follows from the definition of aN
1 (a2):

(A.5) φ1(aN
1 (a2), a2)−aN

1 (a2) ≥φ1(a1, a2)−a1,

all a1 ≥ 0. Likewise for agent 2. It remains to show that ∆w1, ∆w2 ≥ 0, with at least one strict
inequality. We have that

φ1(aN E
1 , aN E

2 )−aN E
1 ≥φ1(aN

1 (a2), aN E
2 )−aN

1 (a2)(A.6)

≥φ1(aN
1 (a2), a2)−aN

1 (a2)(A.7)

where the first inequality follows since by definitionaN E
1 maximizes φ1(a1, aN E

2 ) − a1, and the
second from the fact that φ1 is non-decreasing in a2. If aN E

1 > aN
1 (a2), then (A.6) is strict (by

the uniqueness of the best response). On the other hand consider aN E
1 = aN

1 (a2). We have
y(aN E ) > y(aN E

1 , a2), as if y(aN E ) = y(aN E
1 , a2) then from equation (2), φ2(aN E ) = φ2(aN E

1 , a2) so
aN E

2 > a2 could not be a best response to aN E
1 (a2 is cheaper and generates the same breakdown

payoff). Then from Assumption 3, φ1(aN E ) >φ1(aN E
1 , a2), and so (A.7) is strict. Hence

(A.8) φ1(aN E
1 , aN E

2 )−aN E
1 >φ1(aN

1 (a2), a2)−aN
1 (a2).

Hence substituting (A.8) and (A.5) into (A.4), the increase in utility for agent 1 is ∆w1 > 0. By
symmetry similar conditions to (A.6) and (A.7) hold for agent 2 and hence ∆w1 ≥ 0. 2

PROOF OF THEOREM 2: (i) If a j < a∗
j (ai ) then raising a j by ∆a j sufficiently small will not

violate the self-enforcing constraint as Di (·) is continuous, and will produce more output. Giving
this extra output to agent j , the change in his utility is ∆w j '

((
∂y(a1, a2)/∂a j

)−1
)
∆a j . Since

a j < a∗
j (ai ),

(
∂y(a1, a2)/∂a j

) > 1 and hence utility is improved without violating any constraint.
This contradicts the assumed optimality of the initial contract.
(ii) Suppose say a1 > a∗

1 (a2) and c1 > 0. Consider cutting a1 and c1 by the same amount, that
is ∆c1 = ∆a1 < 0. The ∆w1 = ∆c1 −∆a1 = 0. Transfer this cut in consumption to agent 2 and
reduce his consumption by the reduction in output. That is ∆c2 =−∆c1 +

(
∂y(a1, a2)/∂a1

)
∆a1 =

−(
1− (

∂y(a1, a2)/∂a1
))
∆a1. As

(
∂y(a1, a2)/∂a1

)< 1, and so∆w2 =∆c2 > 0 showing that a Pareto-
improvement can be found. 2

PROOF OF LEMMA 5: As a∗
2 (a1) = argmaxa′

2

{
y(a1, a′

2)−a′
2

}
and ∂2 y(a1, a2)/(∂a2)2 ≤ 0, we

have that y(a1, a′
2)− a′

2 is weakly increasing in a′
2 for aN

2 (a1) ≤ a′
2 ≤ a∗

2 (a1). In particular, since
aN

2 (a1) ≤ a2 ≤ a∗
2 (a1),

(A.9) y(a1, a2)−a2 ≥ y(a1, aN
2 (a1))−aN

2 (a1).

Since in breakdown agent 2 may not receive all output,

D2(a1) ≡φ2(a1, aN
2 (a1))−aN

2 (a1)+δ∑
r
πsr D2(aN E

1,r ,r )

≤ y(a1, aN
2 (a1))−aN

2 (a1)+δ∑
r
πsr D2(aN E

1,r ,r )(A.10)

≤ y(a1, a2)−a2 +δ
∑

r
πsr D2(aN E

1,r ,r ),
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where the second inequality follows from (A.9), and since V2,r ≥ D2(aN E
1,r ,r ), all r ∈ S , this im-

plies (4) is satisfied. Next suppose a2 > 0 and y(a1, a2) > 0. If aN
2 (a1) = 0, then it follows from

a∗
2 (a1) ≥ a2 > 0 that a∗

2 (a1) > aN
2 (a1) and hence from Assumption 1, ∂y(a1, a2)/∂a2 > 0 and thus

∂2 y(a1, a2)/(∂a2)2 < 0 on
(
0, a∗

2 (a1)
)
. Thus (A.9) holds strictly. If aN

2 (a1) > 0 then y(a1, aN
2 (a1)) > 0

and (A.10) is strict by Assumption 3 which implies thatφ2(a1, aN
2 (a1)) < y(a1, aN

2 (a1)); so in either
case (4) holds strictly. 2

PROOF OF THEOREM 3: (i) Assume by contradiction that agent 1 is unconstrained and
a t̃

1 < a∗
1 (a t̃

2), but that c t
2 > 0 after s t for some t < t̃ (where s t is composed of the first t components

of s t̃ ). Assume w.l.o.g. that c t ′
2 = 0 for t < t ′ < t̃ (i.e. choose t so that this is satisfied on s t̃ ). We shall

change the contract at dates t and t̃ (only), and demonstrate an improvement. Consider a small
increase in a t̃

1, ∆a t̃
1 > 0, and let ∆̃ (w D ′

2(a t̃
1)∆a t̃

1) be the resulting increase in agent 2’s deviation
payoff. There are two cases to consider depending on whether c t̃

1 > 0 or c t̃
1 = 0.

Case (a): c t̃
1 > 0. To preserve agent 2’s self-enforcing constraint, transfer ∆̃ from agent 1 at date t̃ ,

so that ∆c t̃
2 = ∆̃, but allocate the extra output to agent 1, ∆c t̃

1 ' (∂y(a t̃
1, a t̃

2)/∂a1)∆a t̃
1 − ∆̃. Agent 1’s

self-enforcing constraint holds as it was slack initially. Thus both self-enforcing constraints hold
at t̃ . Since c t

2 > 0, the increase in 1’s effort can be compensated at t , and the increase in surplus
must imply a Pareto-improvement at t . Specifically: cut agent 2’s consumption at date t so that
∆c t

2 = −δt̃−t π̃∆̃ < 0 where π̃ > 0 is the probability of reaching s t̃ from s t . This consumption is
given to agent 1 so ∆c t

1 =−∆c t
2 > 0. Thus the change in discounted utility for agent 1 at date t is

∆V1(s t ) = δt̃−t π̃∆̃+δt̃−t π̃(∆c t̃
1 −∆a t̃

1)

' δt̃−t π̃∆̃+δt̃−t π̃

((
∂y(a t̃

1, a t̃
2)

∂a1
−1

)
∆a t̃

1 − ∆̃
)

which is positive since a t̃
1 is under-efficient by assumption and hence ∂y(a t̃

1, a t̃
2)/∂a1 > 1. Lise-

wise the change for agent 2 is∆V2(s t ) =−δt̃−t π̃∆̃+δt̃−t π̃∆̃= 0. Thus the period t constraints hold
as actions are unchanged, and there is a Pareto-improvement. It remains to check the constraints
at periods t ′ for t < t ′ < t̃ : agent 2’s future utility (at t̃ ) has increased so his constraints still hold.
However agent 1’s utility at t̃ may have fallen, decreasing her payoff at t ′. Nevertheless, agent 1
gets all consumption so c t ′

1 > 0 and hence by Theorem 2(ii) at ′
1 ≤ a∗

1 (at ′
2 ), unless y(at ′ ) = 0, in

which case at ′
1 = 0, so again at ′

1 ≤ a∗
1 (at ′

2 ). Also by Theorem 1 at ′
1 ≥ aN

1 (at ′
2 ). Likewise by Theorem 1

a t̃
2 ≥ aN E

2 , and we have shown that agent 1’s constraint holds at t̃ , so Ṽ1(s t̃ ) ≥ D1(a t̃
2) ≥ D1(aN E

2 )
as D1(·) non-decreasing, where Ṽ1(s t̃ ) ≡ V1(s t̃ )−∆c t̃

2) is agent 1’s new utility. In the other (un-
reached) states at t̃ , the corresponding inequality holds by equilibrium, so continuation utilities
after t ′ = t̃ −1 satisfy V1,r ≥ D1(aN E

2,r ,r ), for all r ∈S . Lemma 5 can thus be applied to ensure her
constraints hold at t̃ −1. Working backwards, the same holds for all t ′ > t . As all the constraints
are met a Pareto-improvement has been found.
Case (b): c t̃

1 = 0. Continue to allocate all output to agent 2 as a1 is increased. We can apply
Lemma 5 at t̃ : From c t̃

1 = 0 we have c t̃
2 > 0 and hence a t̃

2 ≤ a∗
2 (a t̃

1), unless y(a t̃ ) = 0, in which
case a t̃

2 = 0, so then again a t̃
2 ≤ a∗

2 (a t̃
1). Since a∗

2 (·) is weakly increasing, and a2 is held constant
at a t̃

2, a t̃
2 ≤ a∗

2 (a t̃
1 +∆a t̃

1). However, it is possible that a t̃
2 < aN

2 (a t̃
1 +∆a t̃

1), but in this case also
increase a t̃

2 to aN
2 (a t̃

1 +∆a t̃
1) and allocate all additional output to agent 2. Thus aN

2 (a t̃
1 +∆a t̃

1) ≤
a2 ≤ aN

2 (a t̃
1 +∆a t̃

1). Likewise at t̃ +1, V1,r ≥ D1(aN E
2,r ,r ), for all r ∈ S , by the original equilibrium

being optimum (as argued in (a)). Thus from Lemma 5 agent 2’s constraint holds at t̃ . Agent 1’s
self-enforcing constraint holds as it was slack initially. Since net surplus has risen by the increase
in action(s), agent 1 is more than compensated at t , while keeping agent 2 no worse off (and the
constraints at t ′ for t < t ′ < t̃ continue to hold), following the logic of case (a).
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(ii) We now prove the second part of the theorem. Assume by contradiction that a t̃
2 > a∗

2 (a t̃
1) but

that c t
2 > 0 after s t for some t < t̃ (i.e. earlier on the same history). Assume w.l.o.g. that c t ′

2 = 0
for t < t ′ < t̃ (we can choose t so that this is satisfied on s t̃ ). We shall change the contract at
dates t and t̃ (only), and demonstrate a Pareto-improvement. By Theorem 2(ii) as a t̃

2 > a∗
2 (a t̃

1) we
must have c t̃

2 = 0 and so c t̃
1 = y(a t̃

1, a t̃
2). Now consider a small change in a t̃

2 of∆a t̃
2 < 0, but continue

allocating all output to agent 1. If a t̃
1 > 0 then since c t̃

1 = y(a t̃
1, a t̃

2) > 0 and thus a t̃
1 ≤ a∗

1 (a t̃
2) by The-

orem 2(ii) (and a t̃
1 ≥ aN

1 (a t̃
2) by Theorem 1), agent 1 is initially unconstrained by Lemma 5 and a

small cut in the consumption of agent 1 will not violate his constraint. If on the other hand a t̃
1 = 0,

then after the change we have, trivially, a t̃
1 ≤ a∗

1 (a t̃
2 +∆a t̃

2), while aN
1 (a t̃

2 +∆a t̃
2) ≤ aN

1 (a t̃
2) ≤ a t̃

1(= 0)
as aN

1 (·) is non-decreasing. So Lemma 5 applies and again agent 1’s constraint must hold. For
agent 2 since a t̃

1 is unchanged and w t̃
2 is increased (the cut in effort implies ∆w t̃

2 =−∆a t̃
2 > 0), his

self-enforcing constraint is satisfied at t̃ . Thus both self-enforcing constraints hold at t̃ . Agent 1
is getting all consumption and so satisfies the self-enforcing constraint at all intervening dates
t ′, t < t ′ < t̃ , repeating the argument from part (i) of the proof, while agent 2 is better off due to
the improvement at t̃ , so his constraints are not violated (as default payoffs are unchanged at t ′).
The increase in surplus at t̃ allows for a Pareto-improvement at t : To compensate agent 1 at date
t for any decreased consumption at date t̃ , ∆c t̃

1 < 0, let ∆c t
1 = −δ(t̃−t )π̃∆c t̃

2 > 0, where we denote
by π̃ > 0 the probability of reaching s t̃ at date t̃ starting from t earlier on the same history. We
take this increase from agent 2, so ∆c t

2 = δ(t̃−t )π̃∆c t̃
1 and since ∆c t̃

1 ' (∂y(a t̃
1, a t̃

2)/∂a2)∆a t̃
2 we have

that the change in discounted utility for agent 2 is

∆V2(s t ) ' δ(t̃−t )π̃
((
∂y(a t̃

1, a t̃
2)/∂a2

)
−1

)
∆a t̃

2 > 0

since ∂y(a t̃
1, a t̃

2)/∂a2 < 1 (as a t̃
2 > a∗

2 (a t̃
1)) and ∆a t̃

2 < 0. This Pareto-improvement at date t im-
plies that both self-enforcing constraints hold at t (actions are unchanged, so default payoffs are
unchanged) and moreover the original contract was not optimum. 2

PROOF OF LEMMA 6: By adapting the proof of Theorem 1 it is easy to check that ãi ≥ aN
i (ã j )

for i , j = 1,2, j 6= i . Next, suppose ãi > a∗
i (ã j ). We shall establish a contradiction. If ci > 0 then

lowering both ai and ci by an equal small amount is feasible and raises the net surplus (give
this extra to agent j 6= i ), contrary to assumption. Thus ãi > a∗

i (ã j ) and ci > 0 is impossible. If
ci = 0 and hence c j = y(ã1, ã2) then lowering ai will lower the consumption of agent j and hence
might violate j ’s self-enforcing constraint. But ãi > a∗

i (ã j ) implies y(ã1, ã2) > 0 so c j > 0 and
thus ã j ≤ a∗

j (ãi ) by the above argument. Suppose that ai is reduced to a∗
i (ã j ) with agent j still

receiving all the output. Clearly surplus has increased, and i ’s utility has risen while Di (ã j ) is
unchanged, so i ’s self-enforcing constraint is still satisfied.
(i) If ã j ≤ a∗

j (a∗
i (ã j )) then leave a j unchanged at ã j . Thus, as aN

j can only fall with the cut in ai ,

aN
j (a∗

i (ã j )) ≤ ã j ≤ a∗
j (a∗

i (ã j )). All the conditions of Lemma 5 are satisfied at (a∗
i (ã j ), ã j ), so the

current self-enforcing constraint for j holds:

y(a∗
i (ã j ), ã j )− ã j +δ

∑
r∈S

πsr V j ,r ≥ D j
(
a∗

i (ã j )
)

.

(ii) As ai is reduced a∗
j (ai ) may have fallen below ã j . If this is the case, cut a j to a∗

j (a∗
i (ã j )).

Repeating the argument just given, agent j ’s constraint will be satisfied at (a∗
i (ã j ), a∗

j (a∗
i (ã j ))),

while the cut in a j cannot lead to a violation in i ’s constraint. So again the changed contract
satisfies the self-enforcing constraints.
In both cases (i) and (ii) the reduction in overinvestment leads to an increase in current surplus,
contrary to the assumption that ã was myopic surplus maximizing. We conclude that ãi > a∗

i (ã j )
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is impossible. Thus a∗
i (ã j ) ≥ ãi ≥ aN

i (ã j ). Thus Lemma 5 can again be appealed to, at ã with
continuation utilities set equal to Di (aN E

j ,r ,r ), establishing (5). 2

PROOF OF LEMMA 7: We need to show that both self-enforcing constraints can still hold
with some output division (ĉ1, ĉ2), where ĉ1 + ĉ2 = y(a1, a2), i.e.

(A.11) ĉi −ai +δ
∑

r
πsr V̂i ,r ≥ Di (a j )

for i , j = 1,2, j 6= i . By assumption they hold in the equilibrium supporting a:

(A.12) ci −ai +δ
∑

r
πsr Vi ,r ≥ Di (a j )

for i , j = 1,2; j 6= i . Let i = 1. If (A.11) holds at ĉ1 = 0, then setting ĉ2 = y(a1, a2) guarantees
that (A.11) holds also for agent 2 by Lemma 6 (because V̂i ,r ≥ Di (aN E

j ,r ,r )). Otherwise choose
ĉ1 such that (A.11) holds with equality for i = 1; by continuity this is possible as (A.11) holds at
ĉ1 = y(a1, a2) using Lemma 6 again. Suppose that (A.11) is violated for i = 2. Summing the left
hand side of (A.11) over i thus implies

(A.13) y(a1, a2)−∑
i

ai +δ
∑

r
πsr

∑
i

V̂i ,r <
∑

i
Di (a j ).

But summing (A.12) over i implies that

y(a1, a2)−∑
i

ai +δ
∑

r
πsr

∑
i

Vi ,r ≥
∑

i
Di (a j ),

and since the left hand side is smaller than the left hand side of (A.13) by V̂1,r + V̂2,r ≥ V1,r +V2,r ,
there is a contradiction. Hence we conclude that there is a division of y(a1, a2) such that (A.11)
holds for both agents. 2

PROOF OF THEOREM 4: Consider the following putative equilibrium. At t , in state st , set
a to a current joint surplus maximizing action (i.e. compatible with equilibrium) in this state. As
the set of possible actions can be restricted to a compact set Ã(st ) the maximizing actions exist.
Let

(
V1,r ,V2,r

)
r∈S be the corresponding continuation utilities from t +1 in this equilibrium. At

time t+1, in any state r , follow the (or an) equilibrium that maximizes joint utility from that point
onwards, yielding utilities we denote by

(
V̂1,r ,V̂2,r

)
r∈S . Clearly a is myopic surplus maximizing

relative to
(
V1,r ,V2,r

)
r∈S , so by Lemma 7 there is a split of y(a1, a2) which sustains this as an

equilibrium from t on when
(
V1,r ,V2,r

)
r∈S is replaced by

(
V̂1,r ,V̂2,r

)
r∈S since the latter have a

maximal sum in each state and V̂i ,r ≥ Di (aN E
j ,r ,r ), r = 1,2. Note that this must provide maximal

joint utility from t since current joint surplus is maximized at t , and joint utilities are maximal
from t +1. Consequently starting from any state st , a joint utility maximizing equilibrium must
involve a current joint net output maximizing action compatible with equilibrium in state st , for
if it did not, replacing it by the equilibrium just constructed would lead to a higher utility sum.
At t + 1, since the utility sum is maximal in each state r , repeating the above argument again
confirms that net output is maximal for state r . So a joint utility maximizing equilibrium must
involve a joint net output maximizing action compatible with equilibrium in every state and date.

2

PROOF OF LEMMA 8: By assumption that both constraints bind we have

ci −ai +δ
∑

r
πsr Vi ,r = Di (a j )
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for i , j = 1,2, i 6= 2. Suppose, to the contrary of the claim, that the pair
(
V1,r ′ ,V2,r ′

)
does not

maximize joint utility in at least one successor state r ′. We can change the contract as follows.
Replace (V1,r ′ ,V2,r ′ ) by

(
V̂1,r ′ ,V̂2,r ′

) ∈ Vr ′ such that V̂1,r ′+V̂2,r ′ >V1,r ′+V2,r ′ (and recall that we must
have V̂i ,r ′ ≥ Di (aN E

j ,r ′ ,r ′), i , j = 1,2, j 6= i ), and choose a division ĉ of the current output y(a1, a2)
(i.e. holding a constant) such that

(A.14) ĉi −ai +δ
∑

r 6=r ′
πsr Vi ,r +δπsr ′V̂i ,r ′ ≥ Di (a j )

for i , j = 1,2, j 6= i , with a strict inequality for at least one i . This is possible by the fact that if ĉi =
y(a1, a2) then, as ai ≥ aN

i

(
ã j

)
by Theorem 1, ai ≤ a∗

i (a j ) by hypothesis, and Vi ,r ≥ Di (aN E
j ,r ,r ), r 6=

r ′, V̂i ,r ′ ≥ Di (aN E
j ,r ′ ,r ′), the self-enforcing constraint for agent i must be satisfied (Lemma 5). The

argument then follows the proof of Lemma 7; however the increase in aggregate utility implies
the constraint (A.14) is strict for one agent. This is a Pareto-improvement, so the original contract
could not have been optimal. 2

PROOF OF THEOREM 5: First suppose that Λ(V ) 6= (0,0); otherwise the proposition is triv-
ial.
(i) Suppose first there exists (V1,V2) ∈ V with V1,V2 > 0. Thus in any optimum, with payoffs
(Ṽ1,Ṽ2), either Ṽ1 ≥ V1, or Ṽ2 ≥ V2. We deal first with the former case. In this equilibrium,
choosing t ′ > 0 so that δt ′ w̄/(1−δ) < V1/2, where w̄ is an upper bound on equilibrium per-
period payoffs (this follows from Assumption 1(vi) on the boundedness of y(·)) must be that
c t

1 ≥ µ1 ≡V1/2t ′ for some history s t which occurs with positive probability with t < t ′, otherwise
V1 cannot be accumulated. However, c t

1 ≥ µ1 implies that y(at
1, at

2, st ) ≥ µ1. For convenience,
let st = r . If lima1→∞ y(a1,0,r ) < µ1 then define

¯
a2 > 0 to be such that lima1→∞ y(a1,

¯
a2,r ) = µ1

(this exists by y non-decreasing and by continuity); clearly at
2 ≥

¯
a2, and agent 2’s discounted

consumption at s t must at least equal
¯
a2 in order for continuation utility to be nonnegative. If

lima1→∞ y(a1,0,r ) < µ1 define ã1 so that y(ã1,0,r ) = µ1. By Assumption 3, φ2(ã1,0,r ) > 0. Con-
sequently D2(ã1,r ) ≥φ2(ã1,0,r ) > 0. By continuity there exists (

¯
a1,

¯
a2) such that y(

¯
a1,

¯
a2,r ) =µ1,

with D2
(
¯
a1,r

) ≥ D2 (ã1,r )/2 and
¯
a2 > 0 (note that

¯
a1 = ã1 and

¯
a2 is arbitrary if a2 does not

contribute to output). For the case where lima1→∞ y(a1,0,r ) = µ1 a slight modification of this
argument yields the same conclusion. Thus we conclude that y(at

1, at
2, s t ) ≥ µ1 implies either

at
1 ≥

¯
a1 > 0 or at

2 ≥
¯
a2 > 0. In the former case (at

1 ≥
¯
a1), since D2 (a1,r ) ≥ D2

(
¯
a1,r

) > 0, positive
consumption now or in the future must generate a positive current utility to maintain agent 2’s
self-enforcing constraint. In the latter case (at

2 ≥
¯
a2), since D2 (a1,r ) ≥ 0, the negative utility

from a2 > 0 must be compensated by positive consumption now or in the future. Thus taking
these two cases together, agent 2’s discounted expected consumption at s t must at least equal
min

{
D2

(
¯
a1,r

)
/2,

¯
a2

} > 0, which depends only on V1 (fixed in the proof). So, in the same way
we showed that c t

1 ≥ µ1 for some t < t ′, we can show there exists t ′′ ≥ t ′ such that c t
2 ≥ µ2 for

some t < t ′′ with positive probability. Next, if Ṽ2 ≥V2, we can repeat the argument in a symmetric
fashion. Although µ1 and µ2 depend on state r , we can take their minima over all r ∈ S , and
over the two cases Ṽ1 ≥ V1 and Ṽ2 ≥ V2, and we denote these minima by

¯
µ1 and

¯
µ2 henceforth.

Putting this together, for both agents, c t
i ≥ min

{
¯
µ1,

¯
µ2

}
> 0, for some t < t ′′ (not necessarily at the

same date t for each agent) with positive probability at least equal to the minimum probability
(this is positive by S finite)

¯
π, say, of any t ′′-period positive probability history emanating from

s0 (where min
{

¯
µ1,

¯
µ2

}
, t ′′, and

¯
π are all independent of the particular equilibrium).

(ii) If no (V1,V2) ∈Λ(Vs ) exists with V1,V2 > 0, then there exists a unique optimum (V1 > 0,V2 = 0),
or a unique optimum (V1 = 0,V2 > 0), or both points exist as optima. In either case the argument
above can be repeated mutatis mutandis.
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Let t̂ (random) denote the earliest date such that both consumptions have been positive, i.e. the
first period for which c t̃

1 > 0 and c t ′
2 > 0 for t̃ , t ′ ≤ t̂ . We first show that t̂ is finite almost surely. Note

that by optimality, whenever s0 occurs on a positive probability history, utilities must belong toΛ.
From the above argument and given that all states communicate then after any positive probabil-
ity s t , as s0 can be reached with positive probability in at most n−1 periods, there is a probability
of at least π̂,

¯
π≥ π̂> 0, such that c1 > 0 and c2 > 0 within the next t ′′+n−1 periods. Consequently

Prob[c t
1 = 0, ∀ t or c t

1 = 0 ∀ t ] = 0. We conclude that such t̂ exists for almost all sample paths.
After t̂ , both c1 and c2 have been positive at some point in the past. From Theorem 3(ii) we know
that for t > t̂ , at

i ≤ a∗
i (at

j ). And if i is unconstrained at t , from Theorem 3(i), at
i ≥ a∗

i (at
j ), j 6= i ,

while from Theorem 2(i), at
j ≥ a∗

j (at
i ), hence at = a∗. So inefficiency can only occur if both agents

are constrained. But from Lemma 8 net output is maximized thereafter. We conclude then on any
path after t̂ either actions are always efficient, or there is at most one date at which actions are
not efficient, but this is then followed by the myopic surplus maximizing actions thereafter. 2

PROOF OF THEOREM 6: To simplify notation where there is no ambiguity we shall write
a∗

i (at
j ) as a∗

i .

Part A: We show first that if at t ≥ 0, c t
1 = 0, we have at

1 ≥ a∗
1 and at

2 ≤ a∗
2 . Moreover, if t ≥ 1 and

either inequality is strict, then if c t−1
1 = 0, at−1

1 > a∗
1 . (And likewise if the indices are swapped.)

To see the first part of the claim (suppressing the time t superscripts), note that by ai ≥ aN E
i ,s > 0,

i = 1,2, y > 0 and so c2 > 0; thus a2 ≤ a∗
2 from Theorem 2(ii). Moreover, by Lemma 5, agent 2

is unconstrained (as a2 > 0); hence a1 ≥ a∗
1 . For the second part of the claim, we shall consider

changing, say increasing, agent 1’s utility at t a small amount by decreasing a1 and at the same
time (as this will have relaxed agent 1’s constraint) increasing a2 so that agent 1’s constraint is
unaffected (so if it initially binds, it remains satisfied but binding), while holding c1 = 0, and the
future contract fixed. Formally, let V t

i denote current (to t ) discounted equilibrium utility and
V t+1

i ,r the same at t +1 in state r . Then consider the equations

V1 +a1 = δ
∑

r∈S

πst r V t+1
1,r ,

V2 − y(a1, a2)+a2 = δ
∑

r∈S

πst r V t+1
2,r ,

V1 −D1(a2) =V t
1 −D1

(
at

2

)
.

(A.15)

These are satisfied at (V1,V2, a1, a2) = (
V t

1 ,V t
2 , at

1, at
2

)
(noting that the equality c2 = y(a1, a2) has

been used to substitute out for c2 in the second line). As the functions y(a1, a2), D1(a2) and
D2(a1) are continuously differentiable, and ∂D1(at

2)/∂a2 6= 0 (as ∂D1(at
2)/∂a2 > 0 from Lemma 3),

observing that 0 < at
2 ≤ a∗

2 implies ∂y(at
1at

2)/∂a2 > 0), the implicit function theorem asserts the
existence of continuously differentiable functions a1(V1), a2(V1) and V2(V1) in an open interval
around V t

1 such that a1(V t
1 ) = at

1 etc. which satisfy (A.15), and such that

(A.16) V ′
2(V t

1 ) =−∂y(at
1, at

2)

∂a1
−

(
1− ∂y(at

1,at
2)

∂a2

)
∂D1(at

2)
∂a2

.

Agent 2 is unconstrained so remains unconstrained for small changes in V1 away from V t
1 , the

value at the optimum, while the third line of (A.15) ensures that agent 1’s constraint holds, so the
contracts defined as V1 is varied locally (i.e. starting at date t , with a and c2 varying and hold-
ing the future fixed) are self-enforcing, and V2(V1) gives agent 2’s utility from each such contract.
Now suppose that either inequality is strict, i.e. at

1 > a∗
1 or at

2 < a∗
2 . Then V ′

2(V t
1 ) > −1 (recall
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∂D1(at
2)/∂a2 > 0). At t − 1, suppose that at−1

1 ≤ a∗
1 . A small increase in at−1

1 of ∆ > 0 holding
c t−1

1 = 0, leads to an increase in agent 2’s payoff of at least, to a first-order approximation,∆ (since
∂y/∂a1 ≥ 1) while agent 1 can be compensated at t by a value of V1 satisfying (V t

1 −V1)/δπst−1st =
∆, so that agent 2’s utility changes by approximately ∆+δπst−1st

(
V ′

2(V1)(V t
1 −V1)/δπst−1st

) > 0.
Agent 1’s constraint at t − 1 holds: her utility is held constant and her deviation payoff is un-
changed (at−1

2 is unchanged); and agent 1’s constraint must hold by Lemma 5 (recall c t−1
1 = 0 by

hypothesis). By construction of the contracts defined for each V1 the constraints hold from t .
Thus a Pareto-improvement has been found for ∆ small enough, contrary to the assumed opti-
mality. Hence at−1

1 > a∗
1 .

Part B: Suppose along a history that at ′
1 > a∗

1 for some t ′ ≥ 0. Then we have c t
1 = 0 for all t ≤ t ′

(by Theorem 2(ii) and Theorem 3(ii)). However, at ′
1 > a∗

1 then implies by repeated application of
part A that at

1 > a∗
1 for all t < t ′. Moreover as c t

2 > 0 for all t ≤ t ′, at
2 ≤ a∗

2 for all t ≤ t ′. Hence
Phase 1 conditions are satisfied for all t ≤ t ′ and for i = 1. By the same logic, if at any point t ′

Phase 2 conditions hold (i.e. at ′ ≤ a∗), they must hold at all subsequent dates, since a violation
(i.e. at

i > a∗
i for t > t ′ and some i ) would imply that at ′

i > a∗
i also. Thus any positive probability

s t ′ must satisfy the two-phase property up to t ′. The fact that t̃ in the statement of the theorem is
a.s. finite follows from the argument in the proof of convergence that the date at which both con-
sumptions have been positive is itself a.s. finite (as both consumptions positive implies at ≤ a∗

by Theorem 3(ii)).
Part C: Next, we consider Phase 2, after the initial period t̃ . Suppose that at t̃ +1 in some state r
with πs t̃ r > 0 at least one constraint does not bind. Suppose w.l.o.g. that agent 2 is unconstrained
and we can repeat the argument of Part A, with c1 again being held constant, but now at a pos-
sibly positive level. Again we have a locally differentiable relationship between utilities arising
from self-enforcing contracts at t̃ +1, with slope V ′

2(V t̃+1
1 ) given by (A.16). As agent 2 is uncon-

strained a t̃+1
1 ≥ a∗

1 , and by Phase 2, a t̃+1
1 ≤ a∗

1 , so a t̃+1
1 = a∗

1 . Consequently if a t̃+1
2 < a∗

2 , then
V ′

2(V t̃+1
1 ) > −1, and repeating the argument at the end of Part A, a t̃

1 > a∗
1 , which contradicts the

definition of t̃ . Thus it must be (if either agent is unconstrained at t̃ +1) that a t̃+1 = a∗. It follows
that if a t̃+1 6= a∗, both agents are constrained, and it cannot be that c t̃+1

i = 0 for either i = 1 or

2 as that would imply agent j 6= i is unconstrained by Lemma 5 (as a t̃+1
j > 0). Hence the only

alternative is that both are constrained, and c t̃+1 > 0.
Part D: Moreover if this latter is the case (both are constrained, and c t̃+1 > 0), it cannot be that
a t̃+1

i = a∗
i for either i = 1 or 2. Suppose to the contrary and that w.l.o.g. a t̃+1

1 = a∗
1 . Again we can

construct a family of self-enforcing contracts by varying the contract only at t̃ +1. Consider the
equations

V1 − c1 +a1 = δ
∑

r∈S

πsr V t̃+2
1,r ,

V2 − y(a1, a2)+ c1 +a2 = δ
∑

r∈S

πsr V t̃+2
2,r ,

V1 −D1(a2) = 0,

V2 −D2(a1) = 0,

(A.17)

where V t̃+2
i ,r is continuation utility for i on the equilibrium path from t̃ +2 in state r . These are

satisfied at
(
V t̃+1

1 ,V t̃+1
2 ,c t̃+1

1 , a t̃+1
1 , a t̃+1

2

)
. As the functions y(a1, a2), D1(a2) and D2(a1) are contin-

uously differentiable, the implicit function theorem asserts, provided that

(A.18)
∂D1(a t̃+1

2 )

∂a2

(
1+ ∂D2(a t̃+1

1 )

∂a1
− ∂y(a t̃+1

1 , a t̃+1
2 )

∂a1

)
6= 0,
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the existence of continuously differentiable functions c1(V1), a1(V1), a2(V1) and V2(V1) in an open
interval around V t̃+1

1 such that c1(V t̃+1
1 ) = c t̃+1

1 etc. which satisfy equation (A.17). As a t̃+1
1 =

a∗
1 , ∂y(a t̃+1

1 , a t̃+1
2 )/∂a1 = 1, and also ∂D1(a t̃+1

2 )/∂a2,∂D2(a t̃+1
1 )/∂a1 > 0 (from Lemma 3), since

∂y/∂ai > 0 as a t̃+1
i ≤ a∗

i in Phase 2), so (A.18) holds. Since c t̃+1
1 > 0 and c t̃+1

2 > 0, nonnegativ-

ity constraints on consumption will also hold in an open interval around V t̃+1
1 , and the self-

enforcing constraints hold (by the third and fourth lines of (A.17)). Hence holding the future
contract fixed, but varying V1 varies the current contract according to c1(V1), a1(V1), a2(V1), and
traces out a series of self-enforcing contracts, such that agent 2’s discounted utility is V2(V1), with

V ′
2(V t̃+1

1 ) =−
∂D2(a t̃+1

1 )
∂a1

(
1+ ∂D1(a t̃+1

2 )
∂a2

− ∂y(a t̃+1
1 ,a t̃+1

2 )
∂a2

)
∂D1(a t̃+1

2 )
∂a2

(
1+ ∂D2(a t̃+1

1 )
∂a1

− ∂y(a t̃+1
1 ,a t̃+1

2 )
∂a1

) .

As a t̃+1
2 < a∗

2 , ∂y(a t̃+1
1 , a t̃+1

2 )/∂a2 > 1, so given ∂y(a1, a2)/∂a1 = 1 it follows that V ′
2(V t̃+1

1 ) > −1,
which we have shown is impossible as again it would imply a t̃

1 > a∗
1 . Hence a contradiction, and

therefore if both agents are constrained it is concluded that a t̃+1 < a∗. 2

PROOF OF THEOREM 7: Suppose to the contrary that at
1 > a∗

1 for some s t . From Theo-
rem 2(ii), c t

1 = 0. Agent 1’s optimal current payoff from defaulting is just the Nash breakdown
payoff = φ1(aN E

1 , st )−aN E
1 . We thus have equilibrium current utility, w t

1, is less than this break-
down payoff, as aN E

1 ≤ a∗
1 < at

1 and c t
1 = 0 ≤ φ1(aN E

1 , st ). Denote this negative surplus by χt ≡
w t

1−(φ1(aN E
1 , st )−aN E

1 ) < 0. Agent 1’s discounted utility is V1(s t ) = w t
1+δ

∑
st+1∈S πst st+1V1(s t+1),

so defining the discounted surplus as V S1(s t ) ≡V1(s t )−D1(st ) we have

(A.19) V S1(s t ) =χ(s t )+δ ∑
st+1∈S

πst st+1V S1(s t+1) ≥ 0.

>From equation (A.19) it follows that for at least one state at date t + 1 with πst st+1 > 0 such
that V S1(s t+1) ≥ −χ(s t )/δ > 0. Suppose that either at+1

1 = 0 or at+1
1 > a∗

1 . In the former case,
f (at+1

1 , st+1) = 0, so w t+1
1 = 0. In the latter case, from Theorem 2(ii), c t+1

1 = 0, so w t+1
1 < 0. Con-

sequently, there must, by repeating the earlier logic, be another successor state at date t +2 with
πst+1st+2 > 0 such that continuation surplus V S1(s t+2) ≥−χ(s t )/δ2. We can repeat this argument
if again either at+2

1 = 0 or at=2
1 > a∗

1 . Since continuation surplus must be bounded, this can
only happen a fixed number of times. Thus we must have (along such a path) in finite time
t ′(> t ), 0 < at ′

1 ≤ a∗
1 (st ′ ) and V S1(s t ′ ) > 0 for the first time. Suppose first this happens at t ′ = t +1.

Thus in this state at t +1, agent 1 is unconstrained. Consider frontloading 1’s utility by increas-
ing her action at t + 1 in state st+1 by ∆ > 0 and reducing it at t by δπst st+1∆ to compensate
(holding consumption constant). Agent 2’s utility changes (to a first-order approximation) by
−(
∂ f (at

1, st )/∂a1
)
δπst st+1∆+δπst st+1

(
∂ f (at+1

1 , st+1)/∂a1
)
∆ which is positive by virtue of at

1 > a∗
1

(so ∂ f (at
1, st )/∂a1 < 1) and 0 < at+1

1 ≤ a∗
1 (st+1) (so ∂ f (at+1

1 , st+1)/∂a1 ≥ 1). No constraints are vi-
olated by this: agent 1 is unconstrained at t + 1 (V S1(s t+1) > 0) so for ∆ small her constraint is
maintained; agent 2 receives the extra output at t +1 and by Assumption 3 his breakdown payoff
increases by at most this amount, so his constraint holds. At t there is a Pareto-improvement and
agent 2’s breakdown payoff has not increased (and 1’s is constant) so again the constraints hold.
Thus we have a contradiction. The remaining possibility is that t ′ > t +1. A similar construction
will lead to a Pareto-improvement at t , but now we have additionally to worry about constraints
for periods t̂ between t and t + 1. By construction V S1(s t̂ ) > 0 along the entire path, so for ∆
small enough 1’s continuation surplus remains positive. Agent 2’s utility is backloaded, so his
constraints are relaxed. Again we have a contradiction. 2
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